Conclusies in wetenschappelijk onderzoek zijn altijd in meer of mindere mate onzeker
vanwege:
Biologische variabiliteit tussen individuen
Variabiliteit tussen steekproeven
Experimentele variabiliteit
o Systematisch en toevallige variatie systematische variatie/systematische
afwijking kan door bijvoorbeeld een verkeerd geijkt meetinstrument leiden tot
bias. Systematische afwijkingen in een steekproef kunnen ontstaan door
informatie te verzamelen vanuit een niet passende populatie (bijvoorbeeld een
verkeerde leeftijdsgroep)
Variabiliteit zullen we zo veel mogelijk te verklaren door onderliggende factoren. Wat er aan
onverklaarbare variabiliteit overblijft zullen we kwantificeren.
Streekproef en populatie
Puntschattingen en intervalschattingen
𝑥̅ is een puntschatting van 𝜇
Een puntschatting geeft niets weer over de onzekerheid van de schatting
Wanneer we meer steekproeven nemen, dan weten we dat de puntschatting van
steekproef tot steekproef zal verschillen
Om deze onzekerheid weer te geven maken we gebruik van een intervalschatting
Deze intervalschatting baseren we op de kansverdeling van de puntschatter
Wanneer we veronderstellen dat de te onderzoeken variabele normaal verdeeld is, dan
baseren we de intervalsschatting voor het steekproefgemiddelde dus op de
kansverdeling van het steekproefgemiddelde.
Wanneer x normaal verdeeld is, dan geldt als kansverdeling voor 𝑥̅
sigma
: x̅ N (μ , )
wortel n
* C = BHI = 95 %
, Schatten en toetsen
Toetsen van 1 populatiegemiddelde ( μ ¿: hierbij veronderstellen we dat de variabele normaal
is verdeeld en dat de populatie standaarddeviatie (sigma) bekend is. In dit geval kunnen we
gebruik maken van de z-toets en de daarbij behorende standaard normale verdeling.
1 en 2 zijdig toetsen:
In de realiteit is zowel de populatie standaarddeviatie (sigma) als het populatiegemiddelde ( μ ¿
onbekend. Deze zullen we schatten uit de data die we verzamelen. Echter, door het schatten
van sigma introduceren we een extra onzekerheid. We kunnen nu geen gebruik maken van de
z-toets, wel van de t-toets.
t-verdelingen:
Hoe groter de steekproef (hoe hoger n), hoe nauwkeuriger de schatting van de
standaarddeviatie (s). En hoe meer de t-verdeling de standaard normale verdeling zal
gaan benaderen.
Om rekening te houden met de onzekerheid in de schatting van standaarddeviatie (s),
gebruiken we bij het toetsen van mu nu niet een standaard normale verdeling, maar
een t-verdeling
Een t-verdeling wordt gekenmerkt door vrijheidsgraden (df), voor 1 steekproef zijn die
gelijk aan n-1
Soorten t-toetsen:
T-toetsen zijn, mits ze van grote
omvang zij (n > 15), goed bestand
Les avantages d'acheter des résumés chez Stuvia:
Qualité garantie par les avis des clients
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur BMWsamenvattingen. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €4,99. Vous n'êtes lié à rien après votre achat.