Multivariabele Analyse en Lineaire Algebra (TB132B)
Resume
Samenvatting Multivariabele Analyse en Lineaire Algebra (TB132B)
106 vues 3 fois vendu
Cours
Multivariabele Analyse en Lineaire Algebra (TB132B)
Établissement
Technische Universiteit Delft (TU Delft)
Een samenvatting van alle 16 lectures van dit vak. Het bevat 9 lectures over multivariabele analyse (hiervan is 1 weggelaten, omdat hier vrijwel geen theorie voor was, namelijk: dubbele integralen over algemene regio's). Het bevat 7 lectures over lineaire algebra. Ik heb met deze samenvatting een 1...
Multivariabele Analyse en Lineaire Algebra (TB132B)
Tous les documents sur ce sujet (1)
Vendeur
S'abonner
sennabosman
Aperçu du contenu
Lecture 1 – Planes and lines
De vergelijking van een vlak W wordt als volgt genoteerd: 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0.
Normaalvector = vector die loodrecht op een vlak W staat: 𝑛,.
• De vector 〈𝑎, 𝑏, 𝑐〉 is altijd een normaalvector van het vlak 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0.
Vaak voorkomende situaties:
1. W is parallel aan lijnen k en m: normaalvector = kruisproduct tussen richtingsvectoren k en
m.
2. W staat loodrecht op lijn k: normaalvector = richtingsvector van k.
3. W is parallel aan vlak V: normaalvector W = normaalvector V.
Het kruisproduct van 2 vectoren berekenen:
1. Zet beide vectoren onder elkaar.
2. Bereken determinant van de laatste 2 kolommen à 1e component van nieuwe vector.
3. Bereken determinant van de eerste en laatste kolom (vermenigvuldig met -1) à 2e
component van nieuwe vector.
4. Bereken determinant van de eerste 2 kolommen à 3e component van nieuwe vector.
De oppervlakte van een paralellogram tussen 2 vectoren berekenen = lengte van het
kruisproduct van deze 2 vectoren.
De oppervlakte van een driehoek tussen 3 vectoren a, b en c berekenen = 1/2 ∙
𝑜𝑝𝑝 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑜𝑔𝑟𝑎𝑚(𝑏 − 𝑎 𝑒𝑛 𝑐 − 𝑎).
Afstand berekenen tussen een punt 𝑃(𝑥! , 𝑥" , 𝑥# ) en een vlak 𝑊: 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0:
|𝑎 ∙ 𝑥! + 𝑏 ∙ 𝑥" + 𝑐 ∙ 𝑥# + 𝑑|
𝐷=
√𝑎" + 𝑏" + 𝑐 "
Lecture 2 – First-order partial derivatives
Met partieel afleiden kan de afgeleide van een multivariabele functie opstellen. Dit gaat
bijna precies hetzelfde als normaal differentiëren, op een paar extra regels na.
Neem bijvoorbeeld de functie 𝑓(𝑥, 𝑦, 𝑧) = 3𝑥 $ 𝑧 + 𝑧G𝑦 − 𝑥𝑦 # + 2𝑥:
1. 𝑓% (𝑥, 𝑦, 𝑧) = 12𝑥 # 𝑧 − 𝑦 # + 2 à je beschouwt 𝑦 en 𝑧 als constanten.
'
2. 𝑓& (𝑥, 𝑦, 𝑧) = " & − 3𝑥𝑦 " à je beschouwt 𝑥 en 𝑧 als constanten.
√
3. 𝑓' (𝑥, 𝑦, 𝑧) = 3𝑥 $ + G𝑦 à je beschouwt 𝑥 en 𝑦 als constanten.
De partieel afgeleide bestaat dus uit meerdere delen (afhankelijk van het aantal variabelen)
in plaats van één uiteindelijke vergelijking.
Lecture 3 – Second-order partial derivatives and tangent
planes
Voor een functie met één variabele kan je een raaklijn opstellen aan de grafiek. De formule
voor een raaklijn is: 𝑦 = 𝑓(𝑥) ) + 𝑓 * (𝑥) )(𝑥! − 𝑥) ).
Voor een functie met meerdere variabelen kan je een raakvlak opstellen aan de grafiek. De
+, +,
formule voor een raakvlak is: 𝑧 = 𝑓(𝑥) , 𝑦) ) + (𝑥) , 𝑦) )(𝑥 − 𝑥) ) + (𝑥) , 𝑦) )(𝑦 − 𝑦) ).
+% +&
, Met behulp van een linearisering kan je de waarde van een bepaald punt op de grafiek
bepalen. De uitkomst is dus niet precies hetzelfde als de echte uitkomst, maar bij benadering
+,
wel. De formule voor een linearisering is: 𝐿(𝑥, 𝑦) = 𝑓(𝑥) , 𝑦) ) + +% (𝑥) , 𝑦) )(𝑥 − 𝑥) ) +
+,
(𝑥) , 𝑦) )(𝑦 − 𝑦) ).
+&
Differentialen kunnen worden gebruikt om het verschil tussen twee punten op een grafiek te
+, +,
bepalen. De formule voor een differentiaal is: 𝑑𝑓 = +% (𝑥) , 𝑦) )𝑑𝑥 + +& (𝑥) , 𝑦) )𝑑𝑦. Hierbij is 𝑑𝑥 = 𝑥 −
𝑥) en 𝑑𝑦 = 𝑦 − 𝑦) .
Er bestaan in totaal 3 soorten hogere orde afgeleiden, namelijk:
+! ,
1. = 𝑓%% à twee keer afleiden naar 𝑥.
+% !
+! ,
2. = 𝑓&& à twee keer afleiden naar 𝑦.
+& !
+! , +! ,
3. = +&+% = 𝑓%& = 𝑓&% à eerst afleiden naar 𝑥 en dan naar 𝑦 of eerst afleiden naar 𝑦 en
+%+&
dan naar 𝑥.
Lecture 4 – Chain rule
-, +, -% +, -&
De kettingregel voor twee variabelen ziet er als volgt uit: = +% ∙ -. + +& ∙ -. . Hierbij is 𝑓(𝑥, 𝑦)
-.
een functie van variabelen 𝑥 en 𝑦 én zijn 𝑥 en 𝑦 afhankelijk van parameter 𝑡.
Bij een coördinatentransformatie worden de coördinaten van het ene stelsel omgeschreven
naar coördinaten van een ander stelsel. Denk bijvoorbeeld aan complexe getallen: dan is
𝑥 = 𝑟 cos(𝜃) en 𝑦 = 𝑟 sin(𝜃). Hier zijn 𝑥 en 𝑦 omgeschreven naar een ander stelsel, ze zijn
namelijk uitgedrukt in de parameters 𝑟 en 𝜃. Voor zo’n coördinatentransformatie zien de
+, +, +% +, +& +, +, +% +, +&
partieel afgeleiden er als volgt uit: +/ = +% ∙ +/ + +& ∙ +/ en +0 = +% ∙ +0 + +& ∙ +0. Je berekent hier
dus twee partieel afgeleiden, omdat 𝑥 en 𝑦 uit twee parameters bestaat: 𝑟 en 𝜃. Je
uiteindelijke antwoord bevat dan geen 𝑥 en 𝑦 meer: enkel nog de twee parameters.
Het impliciet afleiden van een functie met 3 variabelen gaat zoals hieronder in het voorbeeld
te zien is. Bereken de afgeleide van 𝑥 " + 4𝑦 " + 2𝑧 " = 1.
𝜕𝑧 𝜕𝑧 𝜕𝑧 𝜕𝑧
→ 2𝑥 + 0 + 4𝑧 ∙ =0 → 8𝑦 + 4𝑧 ∙ =0
𝜕𝑥 𝜕𝑥 𝜕𝑦 𝜕𝑦
𝜕𝑧 −𝑥 𝜕𝑧 −2𝑦
= =
𝜕𝑥 2𝑧 𝜕𝑦 𝑧
Lecture 5 – Directional derivative and gradients
Een eenheidsvector is een vector met een lengte van 1. Als je een niet-eenheidsvector wil
omschrijven naar een eenheidsvector, dan gaat dat zo: 𝑤R = 〈−3,2〉 à |𝑤R| = √9 + 4 = √13 à
# "
𝑢, = 〈− , 〉 à |𝑢,| = 1. Deze vector heeft dezelfde richting als de originele vector, alleen
√!# √!#
een andere lengte.
Een richtingsafgeleide geeft de afgeleide van een grafiek in een bepaald punt in een
bepaalde richting. De richting wordt hierbij aangegeven door een vector. De formule voor
de richtingsafgeleide in een bepaald punt in de richting van een vector 〈𝑎, 𝑏〉 is als volgt:
Les avantages d'acheter des résumés chez Stuvia:
Qualité garantie par les avis des clients
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur sennabosman. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €5,49. Vous n'êtes lié à rien après votre achat.