Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting Data Mining €15,47   Ajouter au panier

Resume

Samenvatting Data Mining

11 revues
 569 vues  31 fois vendu

Deze samenvatting Data Mining is gemaakt in jaar , en is een samenvatting van de slides aanvullend met extra notities en alsook de belangrijke inhoud uit het boek.

Aperçu 6 sur 93  pages

  • 28 janvier 2020
  • 93
  • 2019/2020
  • Resume
Tous les documents sur ce sujet (2)

11  revues

review-writer-avatar

Par: sebwillemse • 1 année de cela

review-writer-avatar

Par: audreyvanlierde • 2 année de cela

review-writer-avatar

Par: oussamaelbouazzaoui • 3 année de cela

review-writer-avatar

Par: timluypaert • 2 année de cela

review-writer-avatar

Par: studentua16 • 2 année de cela

review-writer-avatar

Par: matssanc • 4 année de cela

review-writer-avatar

Par: jdkfh • 4 année de cela

Traduit par Google

Too few lesson notes, small font

reply-writer-avatar

Par: julievantroyen • 4 année de cela

Traduit par Google

Too bad you're not satisfied. I do not entirely agree with your comments. The small font can already be seen by the preview/preview before purchasing the summary. Too few lesson notes are very subjective. The lesson notes are enough to get a nice score on the exam, like I did.

Afficher plus de commentaires  
avatar-seller
julievantroyen
Data Mining 2019 – 2020
This is an overview of the slides of the courses Data Mining, added with notes off the book. Some notes of the classes are in
grey.

Overall goals for this course
• You know how to solve business problems by data-analytical thinking
• You are able to interact competently on the topic of data science for business analytics
o For example: is there a data science angle to Facebook’s 19 billion US$ acquisition of WhatsApp?
o For example: why did Match Inc. share price suddenly drop after Facebook revealed its dating app?
• You know several tools and ways of how to practically implement solution methods

What will we be seeing in the course?
• Predictive modeling
o Data Preprocessing
o Terminology
o Decision Trees and Support Vector Machines
• Desciptive modeling
o Clustering
o Association Rule mining
o Recommender Systems
• Evaluating models
• Text Mining
• Deep learning and Vision
• Applications in Marketing, Risk Management, HR, and others
• Intro to Data science and Ethics


Overview Data Mining course
• Intro to Data Mining and Applications
• Data Preprocessing
• Predictive Modeling
o Decision Trees
o Learning versus Overfitting
• Evaluating Classifiers
o Accuracy, Confusion Matrix and Expected Profit
o Visualizing Model Performance
• Naive Bayes
• Big Data
• Text Mining Descriptive Modeling
o Clustering and Association Rule Mining
o Recommender Systems
• Support Vector Machines
• Artificial Neural Networks and Deep Learning
• Ensemble Methods
• Ethics of Data Science




1

,Inhoudsopgave Data Mining 2019-2020
LECTURE 1: Introduction and applications (chapters 1-2) ................................................................................................... 6

Chapter 1 book .................................................................................................................................................................. 7

LECTURE 2: to explain vs to predict and preprocessing ..................................................................................................... 11

1. Explaining versus predicting ......................................................................................................................................... 11

2. Data preprocessing ...................................................................................................................................................... 13
2.1 Sampling.......................................................................................................................................................................... 13
Intermezzo: lazy learner 1NN ............................................................................................................................................ 14
2.2 Encoding .......................................................................................................................................................................... 14
2.3 Missing values ................................................................................................................................................................. 14
2.4 Outliers ............................................................................................................................................................................ 15
Intermezzo: lazy learner 1NN ............................................................................................................................................ 15
2.5 Normalising ..................................................................................................................................................................... 15
2.6 Discretisation and grouping of attribute values .............................................................................................................. 16

Chapter 2 book ................................................................................................................................................................ 17

LECTURE 3: decision trees and overfitting (chapters 3-5) .................................................................................................. 20

Chapter 3: introduction to predictive modeling ............................................................................................................... 20
1. Terminology ...................................................................................................................................................................... 20
2. Finding informative variables from the data ..................................................................................................................... 20
3. Decision trees .................................................................................................................................................................... 21

Methodology of decision trees in more detail (not in book) ............................................................................................. 23
1. Splitting rules..................................................................................................................................................................... 23
2. STOPPING RULES ............................................................................................................................................................... 26
3. Assignment rule ................................................................................................................................................................. 27
Decision trees: advantages and disadvantages .................................................................................................................... 27

Chapter 5: Overfitting and its avoidance (not in book) ..................................................................................................... 28
1. Fitting graph ...................................................................................................................................................................... 28
2. Predictive models: attention points................................................................................................................................... 29
2.1 Training set versus Test set ......................................................................................................................................... 29
2.2 Learning versus Overfitting ......................................................................................................................................... 30
2.3 Generalisation behaviour ............................................................................................................................................ 30




2

,LECTURE 4: assessing and visualizing model performance (chapter 7-8) ........................................................................... 32

Chapter 7: decision analytic thinking: what is a good model?........................................................................................... 32
1. Evaluating classifiers ......................................................................................................................................................... 32
1.1 Accuracy ...................................................................................................................................................................... 32
1.2 Confusion matrix ......................................................................................................................................................... 32
1.3 Problems : unbalanced classes .................................................................................................................................... 32
1.4 Problems : unequal costs and benefits ....................................................................................................................... 32
2. Expected value .................................................................................................................................................................. 33
2.1 Expected Value for classifier evaluation ..................................................................................................................... 33
2.2 Exercises ...................................................................................................................................................................... 35
3. Evaluation and baseline performance ............................................................................................................................... 36

Chapter 8: visualizing model performance ....................................................................................................................... 37
1. Introduction ....................................................................................................................................................................... 37
2. Profit curves ...................................................................................................................................................................... 37
3. ROC curve .......................................................................................................................................................................... 38
4. AUC.................................................................................................................................................................................... 38
5. Cumulative response and lift curves .................................................................................................................................. 38
5.1 cumulative response curve ......................................................................................................................................... 38
5.2 lift curve ...................................................................................................................................................................... 38
6. Exercices ............................................................................................................................................................................ 39

LECTURE 5: naïve bayes (chapter 9) ................................................................................................................................. 42
1. Introduction: Evidence ....................................................................................................................................................... 42
2. Bayes rule and naïve bayes ............................................................................................................................................... 42
3. Exercises ............................................................................................................................................................................ 43

LECTURE 6: descriptive data mining (chapters 6, 12) ........................................................................................................ 45

1. Nearest-neighbor ......................................................................................................................................................... 45

2. Clustering .................................................................................................................................................................... 47

3. Frequent itemsets and Association rules (not in book) ................................................................................................. 48
Apriori – Step 1 ...................................................................................................................................................................... 49
Apriori – Step 2 ...................................................................................................................................................................... 49

4. Recommender systems (not in book) ........................................................................................................................... 50
4.1 Recommender systems – utility function Content-based recommendation ................................................................... 50
4.2 Recommender systems – utility function Collaborative recommendation ..................................................................... 51
4.3 Recommender systems – dimensionality reduction ........................................................................................................ 51
4.4 In conclusion .................................................................................................................................................................... 51

5. Exercises ...................................................................................................................................................................... 52
5.1 Apriori.............................................................................................................................................................................. 52
5.2 Clustering – hierarchical .................................................................................................................................................. 53
5.3 Clustering – k-means ....................................................................................................................................................... 53

Some example questions ................................................................................................................................................. 54




3

,LECTURE 7: Text mining (chapter 10)................................................................................................................................ 55
1. Why text mining? .............................................................................................................................................................. 55
2. Text preprocessing ............................................................................................................................................................ 55
3. Document Classification and Clustering ............................................................................................................................ 58
3.1 document classification............................................................................................................................................... 58
3.2 document clustering ................................................................................................................................................... 58
4. Topic Modeling and Word Embeddings ............................................................................................................................ 59
4.1 topic models ................................................................................................................................................................ 59
4.2 word embeddings ....................................................................................................................................................... 60
5. Case Study in Politics ......................................................................................................................................................... 61
6. Exercise HR analytics ......................................................................................................................................................... 63

LECTURE 8: text mining OLS, logit .................................................................................................................................... 64
1. OLS – ordinary least squares regression ............................................................................................................................ 64
2. Ridge regression ................................................................................................................................................................ 64
3. Logistic regression ............................................................................................................................................................. 65
4. Gradient descent ............................................................................................................................................................... 67
Exercises ................................................................................................................................................................................ 68
Questions .............................................................................................................................................................................. 68

LECTURE 9: artifical neural networks and deep learning Ensemble methods .................................................................... 69
1. Ensemble methods ............................................................................................................................................................ 69
Combine by consensus ..................................................................................................................................................... 70
1.1 Bagging ........................................................................................................................................................................ 70
1.2 Random Forests .......................................................................................................................................................... 70
Combine by Learning ........................................................................................................................................................ 70
1.3 Boosting ...................................................................................................................................................................... 70
1.4 Stacking ....................................................................................................................................................................... 71
Conclusion......................................................................................................................................................................... 71
2. Artificial neural networks .................................................................................................................................................. 72
3. Deep learning .................................................................................................................................................................... 76
Questions .............................................................................................................................................................................. 77

LECTURE 10: DEEP LEARNING ........................................................................................................................................... 78
1. DEEP LEARNING................................................................................................................................................................. 78
2. THE SVM – Support vector machines ................................................................................................................................ 79
3. ADVANCED TOPIS .............................................................................................................................................................. 80
3.1 networked data ........................................................................................................................................................... 80
3.2 the black swan............................................................................................................................................................. 82
3.3 future of Al .................................................................................................................................................................. 82
Resources Al ..................................................................................................................................................................... 83
Use Al ................................................................................................................................................................................ 83




4

,LECTURE 11: Data science ethics ...................................................................................................................................... 84
1. Data gathering: privacy, A/B, Testing and bias ................................................................................................................. 85
2. Data processing: proxies, Government backdoors ............................................................................................................ 87
2.1 proxies ......................................................................................................................................................................... 87
2.2 government backdoors ............................................................................................................................................... 87
3. Modeling: ZK proofs, homomorphic encryption, discrimination ....................................................................................... 88
3.1 Zero Knowledge Proof ................................................................................................................................................. 88
3.2 Encryption ................................................................................................................................................................... 88
3.3 discrimination.............................................................................................................................................................. 88
4. Model evaluation: explain ................................................................................................................................................. 89
4.1 global explanations ..................................................................................................................................................... 89
4.2 instance-based explanations ....................................................................................................................................... 90
5. Deployment: unintended consequences ............................................................................................................................ 91
5. 1 Unintended consequences ......................................................................................................................................... 91
5.2 Cautionary tales .......................................................................................................................................................... 92
5.3 Conclusion ................................................................................................................................................................... 92

LECTURE 12: Recap and questions.................................................................................................................................... 93
1. Example Exam Questions .................................................................................................................................................. 93
2. Questions........................................................................................................................................................................... 93




5

, LECTURE 1: INTRODUCTION AND APPLICATIONS (CHAPTERS 1-2)
• Example: Hurricane Frances
o Why would data-driven prediction be useful? To project the amount of increase in sales due to the
hurricane, to ensure that local Walmart’s are properly stocked
o Goal: find non-obvious patterns
• Terminology
o Data science: a set of fundamental principles that guide the extraction of knowledge from data
o Data mining: automatic extraction of patterns from large amounts of data (via tools/technologies that
incorporate the principles)
o Big Data: data that is so large that traditional data processing systems are unable to deal with it (both
storage and analysis component)
o Querying and reporting
§ You know exactly what you are looking for.
§ SQL (commando’s such as select, from, where…)
o OLAP – On-Line Analytical Processing
§ = Advanced query and reporting
§ Multidimensional analysis
Terminology
§ Nice visualization, data cubes, roll-up, slice and dice, ...
§ Resembles with query, but OLAP has also visualization
14




Business Intelligence
§ Can show problems that exist in data
o Getting the right information to the right person at the right
o Business Intelligence = getting the right information to the right person at the right time
time
You know what you Business intelligence includes data
OLAP look for! SQL
warehousing, OLAP and Data
Data ware- mining.
housing
Data warehousing tries to solve the
problem in all large companies,
You don’t know what
you look for! Looking
such as the fact that data is stored
for new knowledge in different databases over many
different locations.
Data mining
“collect and coalesce data from across an enterprise,
often from multiple transaction-processing systems, Data warehousing will collect data
15
each with its own database.”
in 1 warehouse
§ Data mining: Setting the scene with credit scoring example
• Banks: should I grant credit to this loan applicant?
• Predict the creditworthiness, based on historical data (not possible when new bank)
§ Difference data mining and OLAP: an algorithm looks for data in data mining, and in OLAP you
have to define what you are looking for
o Machine Learning
§ Improving the knowledge of a learning agent (computer), which try to find patterns based on
a Mining §
data
More than just data mining, also computer vision and robotics
o Artificial Intelligence (Al)
§ A computer interacts through data
ata mining: automatic extraction of knowledge from data § Learning from data leads to intelligence
§ Big Data + Machine Learning = Artificial Intelligence (Theodoros Evgeniou, 2019)
tting the scene with credit scoring example § Renewed interest from Deep Learning (large artificial neural networks)
Banks: should I grant credit §
to this loanMost work in AI is on data mining
applicant? Notations
o The separation between the fields has blurred
Predit the creditworthiness, based on historical data

Data


Input matrix X Target variable Y
Data mining technique
Data instance xi
a vector of size m (number of input variables)
Pattern i = 1, 2, …, m (number of data instances)




Note: an intial set of data instances with known target 6
variable needed! Input variable or feature xj
16 a vector of size n (number of data instances)
xij: the value for input variable j i = 1, 2, …, m (number of input variables)
for data instance i

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur julievantroyen. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €15,47. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

79202 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€15,47  31x  vendu
  • (11)
  Ajouter