Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Solutions Manual for Analyzing Politics Rationality, Behavior, and Institutions, 2nd Edition by Kenneth, Shepsle (All Chapters) A+ €12,60   Ajouter au panier

Examen

Solutions Manual for Analyzing Politics Rationality, Behavior, and Institutions, 2nd Edition by Kenneth, Shepsle (All Chapters) A+

 11 vues  0 fois vendu
  • Cours
  • Établissement
  • Book

Solutions Manual for Analyzing Politics Rationality, Behavior, and Institutions, 2nd Edition by Kenneth, Shepsle (All Chapters) A+..

Aperçu 4 sur 49  pages

  • 8 octobre 2024
  • 49
  • 2024/2025
  • Examen
  • Questions et réponses
avatar-seller
Created By: A Solution


Solutions Manual for Analyzing Politics Rationality,

Behavior, and Instititutions, 2nd Edition by Kenneth, Shepsle

(All Chapters) A+
Analyzing Politics: Answer Key

Chapter 2: Problems and Discussion Questions

4. Either player can identify a top choice (or choices in the case of indifference) for any

subset of size 2. This is always the case as long a person’s preferences satisfy comparability.

There are 5 subsets with 3 or more outcomes: wxy, wxz, wyz, xyz and wxyz. Mr. i’s and Ms. j’s

most-preferred outcomes over these subsets are shown in Table l. Where either actor cannot state

a most-preferred choice or choices, the table contains a ‘-’.

Mr. i Ms. j
Subset Top choice Cycle? Top choice Cycle?
wxy x No x,y No
wxz - Yes x No
wyz w No y No
xyz - Yes x,y No
wxyz - Yes x,y No
Table l: Mr. i’s and Ms. j’s preferences for within subsets of the outcomes.

Preference orderings over a subset of outcomes which contain a strict preference cycle through

all of the elements in the subset have no articulable top choice. Preferences orderings over a

subset of outcomes which contain a strict preference cycle through less than all of the outcomes

in the subset may or may not have an articulable top choice. By way of comparison, note that i

has no top choice among the subset wxyz, but an individual with the following preferences



1

,Created By: A Solution


would strictly prefer w despite the presence of a cycle through x, y and z: wPx, wPy, wPz, xPy,

yPz, and zPx.

Thus, transitive preferences are a sufficient condition for identifying top choices with respect to

any possible set of outcomes. Technically, acyclic preferences over all triples of alternatives in a

subset are necessary and sufficient for each subset to possess a maximal element. Acyclicity is

defined, for any x, y, z, as: if xPy, yPz then not zPx. Transitivity implies acyclicity and thus is

sufficient for the existence of a maximal element. Inasmuch as maximizing behavior often relies

on specifying clear ordinal rankings among outcomes, transitive preferences are effectively a

prerequisite for a rational choice approach to individual decision-making.

5. A reasonable assumption is that Senator Clinton’s preferences at that point were as

follows: P > S > C. Because she chose the office of Secretary of State, it would not be reasonable

to assume that P > C > S. The assumption that P > S is stronger, but corresponds with reports in

the media at the time.



The fact that Senator Clinton chose the position within the administration implies the following:

S > (l — p)C + p(P ). The chance to serve as Secretary of State was preferred to a risky ‘lottery’

over remaining in the Senate and eventually becoming President. We can rearrange the parts of

the inequality to derive



the following statement: S—C



> p. Thus, the lowest p which would induce Hillary Clinton to stay in the




2

,Created By: A Solution


Senate is S—C



= p, and any p greater than S—C



would induce a strict preference for remaining in the



Senate. This relation also suggests three interesting comparative statics when all other variables

are held constant: l. there is a threshold as S increases at which one cannot resist the offer of the

Secretaryship; 2. there is a threshold as P increases at which one will reject the Secretaryship and

hold out for a chance at the Presidency; and, 3. as C increases the threshold p at which one will

accept the Secretaryship decreases. This latter effect occurs because as serving in Congress

becomes more desirable, the lottery over C and P becomes more appealing relative to the S.



6. Recall that the theory of expected utility states that given two different lotteries, L and L′,

over the same outcomes, then LPL′ if and only if ΣxєX p(x)u(x) > ΣxєX p′(x)u(x). Using this

definition we can get the

following two relations about Ll and L2, and L3 and L4:




The trick here is to manipulate these expressions to show that they imply a contradiction.

Consider the following two steps: add .89u(z) to both sides of the first expression, and then

subtract .89u(y) from both sides of the first expression. This yields:



3

, Created By: A Solution




which contradicts our second expression.

Two steps in this process require further justification. First, is it okay to add and subtract

constants to an expected utility expression? This is fine: expected utilities act like numbers and

adding the same number to each side of an expression will not change the overall preference

relation. If I prefer 2 apples to l orange, then I should also prefer 2 apples and lO units of utility

to l orange and lO units of utility. Second, can we take these ‘manipulated’ expressions and treat

them as identical to a genuine lottery? If we are smart about our manipulations (i.e. add and

subtract things so that we still have a proper probability distribution where all of the probabilities

are between O and l, and also sum to l) then we can treat the new objects as ordinary lotteries.

This is what allows us to compare our manipulated version of expression l with expression 2.




4

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur ASolution. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €12,60. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

80364 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€12,60
  • (0)
  Ajouter