APM2611 Assignment 3 (COMPLETE ANSWERS) 2024 - DUE 14 August 2024
Exam (elaborations) APM2611 Assignment 4 (COMPLETE ANSWERS) 2024 - DUE 25 September 2024 •	Course •	Differential Equations - APM2611 (APM2611) •	Institution •	University Of South Africa •	Bo...
Exam (elaborations) APM2611 Assignment 4 (COMPLETE ANSWERS) 2024 - DUE 25 September 2024 •	Course •	Differential Equations - APM2611 (APM2611) •	Institution •	University Of South Africa •	Bo...
,[Type the abstract of the document here. The abstract is typically a short summary of the contents of
the document. Type the abstract of the document here. The abstract is typically a short summary of
the contents of the document.]
, Exam (elaborations)
APM2611 Assignment 4 (COMPLETE ANSWERS) 2024 -
DUE 25 September 2024
Course
Differential Equations - APM2611 (APM2611)
Institution
University Of South Africa
Book
Differential Equations
APM2611 Assignment 4 (COMPLETE ANSWERS) 2024 - DUE 25 September
2024 ;100 % TRUSTED workings, explanations and solutions. ...........
Question 1 1. Find the radius and interval of convergence of the following
series: ���X n=1 (−1) n−1 x2n−1 (2n − 1)! 2. Rewrite the expression below
as a single power series: ∞X n=2 cn+1 x n−2 − ∞X n=1 4cn x n−1 . 3. Use the
power series method to solve the initialvalue problem (x + 1)y 00 − (2 − x)y 0
+ y = 0, y(0) = 2, y 0 (0) = −1; where c0 and c1 are given by the initial
conditions. 4. Use the power series method to solve the initialvalue problem.In
particular, find c 0 , c1 , c2 , c3 and c4 in the equation y(x) = P ∞ n=0 cn x n .
y 00− x 2 y = 0; y(0) = 3, y 0 (0) = 7.
Question 1
Find the radius and interval of convergence of the series:
1. Consider the general term an=(−1)n−1x2n−1(2n−1)!a_n = \frac{(-1)^{n-1} x^{2n-1}}
{(2n-1)!}an=(2n−1)!(−1)n−1x2n−1.
2. Apply the ratio test: ∣an+1an∣=∣(−1)nx2(n+1)−1(2(n+1)−1)!⋅(2n−1)!
(−1)n−1x2n−1∣=∣x2n+1(2n+1)!⋅(2n−1)!x2n−1∣=∣x2(2n+1)(2n)∣\left| \frac{a_{n+1}}
{a_n} \right| = \left| \frac{(-1)^n x^{2(n+1)-1}}{(2(n+1)-1)!} \cdot \frac{(2n-1)!}{(-
1)^{n-1} x^{2n-1}} \right| = \left| \frac{x^{2n+1}}{(2n+1)!} \cdot \frac{(2n-1)!}
{x^{2n-1}} \right| = \left| \frac{x^2}{(2n+1)(2n)} \right|anan+1=(2(n+1)−1)!
(−1)nx2(n+1)−1⋅(−1)n−1x2n−1(2n−1)!=(2n+1)!x2n+1⋅x2n−1(2n−1)!=(2n+1)(2n)x2
Les avantages d'acheter des résumés chez Stuvia:
Qualité garantie par les avis des clients
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur tabithamwendwa73. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €2,54. Vous n'êtes lié à rien après votre achat.