Heldere uitgetypte samenvatting van alle hoorcolleges gegeven door prof. Philippe Carette in het academiejaar , inclusief alle bewijzen. In deze samenvatting komt de theorie van Wiskunde 2 aan bod.
In het oorspronkelijk document zaten er fouten. Deze zijn gecorrigeerd en het document is geüpdatet.
Bepaalde integraal
Definitie
Interpretatie: oppervlakte
Belangrijkste eigenschappen
Economische toepassing: consumenten- en producentensurplus
Oneigenlijke integralen
Definities
Voorbeelden
Convergentie en divergentie
Bepaalde integraal
Bij een bepaalde integraal ga je de
oppervlakte berekenen van gebieden die
begrensd zijn door rechten /functies /
curves / grafieken…
Definitie 𝑎 = ondergrens / 𝑏 = bovengrens
Zij 𝑓 continu op [ 𝑎, 𝑏 ], dan
𝑏 𝑏 = altijd een getal als uitkomst → geen 𝑥-waarde
∫ 𝑓(𝑥) 𝑑𝑥 = [ 𝐹(𝑥) ] = 𝐹(𝑏) − 𝐹(𝑎) → geen functie
𝑎 𝑎
Waarbij 𝐹 een primitieve functie is van 𝑓 op ] 𝑎, 𝑏 [.
𝑎𝑙𝑠
𝐹 is een primitieve van 𝑓 ⇔ 𝐹 ′ = 𝑓
1
, Voorbeeld
1 1
∫ (2𝑥 + 1) 𝑑𝑥 = [ 𝑥 2 + 𝑥 ] = (12 + 1) − (02 + 0) = 2 (bij moeilijke functies kan men dus gebruik
0 0 maken van P.I. of substitutiemethode.
𝑓 𝐹 𝐹(1) 𝐹(0)
Opmerking
Men mag de integratieconstante weglaten bij het vinden van 𝐹(𝑥).
[𝑥 2 + 𝑥 + 𝐶]10 = 𝐹(1) − 𝐹(0) = (12 + 1 + 𝐶) − (02 + 0 + 𝐶) +𝐶 − (+𝐶) = 0
⟶ 𝐶 valt weg
⟶ indien je ze wel schrijft, geen probleem. Hiervoor zullen geen
punten voor worden afgetrokken.
Oppervlakte als 𝑓 positief op [ 𝑎, 𝑏 ]
𝑏
𝐴 = ∫ 𝑓(𝑥) 𝑑𝑥
𝑎
Oefening
Bereken de oppervlakte van het vlakdeel begrensd door de grafiek van 𝑦 = 2𝑥 + 1, de 𝑋-as, de
𝑌-as en de rechte 𝑥 = 1.
1+3
1. oppervlakte = ( )∙1=2
2
1
2. de bepaalde integraal: oppervlakte = ∫ (2𝑥 + 1) 𝑑𝑥
0
1
= [ 𝑥 2 + 𝑥 ]0
= (12 + 1) − (02 + 0)
=2−0=2
𝑏1 + 𝑏2
De oppervlakte (een trapezium) heeft als formule ∙ℎ
2
OF
De oppervlakte van een rechthoek + driehoek
2
, Opgelet!
Opmerking: wanneer een functie over een (gedeeltelijk) negatief oppervlakte beschikt, zoals
hieronder, moet je de positieve oppervlakte splitsen met de negatieve oppervlakte. Bij het negatief
oppervlak moet je als volgt een minteken ervoor plaatsen. Achteraf sommeren we de twee
oppervlaktes om de totale oppervlakte te weten.
… …
Het basisidee is: oppervlakte tussen twee grafieken: [∫ boven 𝑓 − ∫ onder 𝑓 ]
… …
𝑨𝟏
= −
𝑎 𝑐 𝑎 𝑐 𝑎 𝑐
𝑐 𝑐
𝐴1 = ∫ 𝑔(𝑥) 𝑑𝑥 − ∫ 𝑓(𝑥) 𝑑𝑥
𝑎 𝑎
𝑨𝟐
= −
𝑐 𝑏 𝑐 𝑏 𝑐 𝑏
𝑏 𝑏
𝐴2 = ∫ 𝑓(𝑥) 𝑑𝑥 − ∫ 𝑔(𝑥) 𝑑𝑥
𝑐 𝑐
4
Les avantages d'acheter des résumés chez Stuvia:
Qualité garantie par les avis des clients
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur nicolasdewulf. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €8,49. Vous n'êtes lié à rien après votre achat.