Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting Lineaire Algebra - Hfst 8 Eigenwaarden en eigenvectoren €2,99   Ajouter au panier

Resume

Samenvatting Lineaire Algebra - Hfst 8 Eigenwaarden en eigenvectoren

 12 vues  0 fois vendu

Hfst 8: Eigenwaarden en eigenvectoren gegeven door prof Willem Waegeman Deze samenvatting beslaat de cursus waaraan extra inzichten en bevindingen zijn toegevoegd + !!stappenplannen voor verschillende soorten oefeningen uit te werken!!

Dernier document publié: 4 mois de cela

Aperçu 1 sur 2  pages

  • 17 mai 2024
  • 10 juillet 2024
  • 2
  • 2023/2024
  • Resume
Tous les documents sur ce sujet (13)
avatar-seller
BioIngenieur
Hoofdstuk 8
Eigenwaarden en eigenvectoren


Eigenwaarden en eigenvectoren
⃗ = 𝝀𝒙
𝑨𝒙 ⃗

▪ 𝐴𝑥 = lineaire transformatie met A de tranformatiematrix
▪ 𝑥 = eigenvector = intuïtief een vector die niet veranderd
▪ λ = eigenwaarde

Ga na of volgende vectoren eigenvectoren zijn van de matrix A

▪ Bereken 𝐴𝑥 en kijk of je het kan herschrijven als een scalair maal 𝑥 => 𝜆𝑥
▪ Meetkundige interpretatie:
o Beschouw de vector die je moet onderzoeken in het assenstelsel, als de nieuwe vector
gevormd door 𝐴𝑥 op de rechte ligt dat de oorsprong en de vector vormen, is het een veelvoud
en dus een eigenvector van A


Bepaal de eigenwaarden en eigenvectoren voor een gegeven A !!!goed beheersen

▪ 𝑨𝒙⃗ = 𝝀𝒙
⃗ met 𝒙
⃗ ≠ 0 dus de nuloplossing kan al niet
▪ 𝐴𝑥 – 𝜆𝑥 = ⃗0
▪ (𝐴 – 𝜆𝐼)𝑥 = ⃗0
▪ Dan de 𝑥 ’en zoeken zodat dit stelsel meer dan 1 oplossing heeft
Dus deze matrix mag NIET inverteerbaar zijn (anders heb je een unieke oplossing) → det = 0
▪ det(𝐴 – 𝜆𝐼) = 0 (op de hoofdiagonaal van A telkens – λ doen)
▪ Dit oplossen en zo bekom je uitdrukkingen voor 𝜆 = …. = de eigenwaarden
o Bij matrices groter dan 2x2 zal je moeten proberen rij/kolom ontwikkelen
o Probeer 0’en te creëren
▪ Nu alle eigenwaarden als gevallen beschouwen om de bijhorende eigenruimte met eigenvectoren
te bepalen
▪ ⃗ ] en rij herleidt deze matrix
Vul λ in, in de uitgebreide matrix [(𝐴 – 𝜆𝐼) 0
▪ 𝑥 = [oplossing] → parameterisatie en zo bekom je de eigenruimte = al de eigenvectoren voor die λ
= eigenruimte εA(λ) van die eigenwaarde λ
meetkundig kan je de eigenruimte als een lijn (1 vector) of als vlak (2 vectoren), …. Voorstellen
= alle eigenvectoren die in die ruimte zitten behorend tot die specifieke eigenwaarde, van A


De karakteristieke vergelijking pA(𝝀)

→ bevat de eigenwaarden van 𝑨 – 𝝀𝑰

Kan ontbonden worden in factoren van de eerste graad = de eigenwaarden, kan met multipliciteit 2 of meer


De eigenruimte εA(λ) van een eigenwaarde λ

= de verzameling van alle eigenvectoren bij λ

▪ De eigenruimte εA(λ) = N(𝑨 – 𝝀𝑰), de nulruimte van (𝑨 – 𝝀𝑰) met 𝝀 ingevuld


Algebraïsche multipliciteit αA(λ) = aantal keer dat λ als wortel in pA(λ) voorkomt

Meetkundige multipliciteit γA(λ) = de dimensie van εA(λ) = aantal vectoren die het opspant (na parameter)

▪ Als αA(λ) = γA(λ) VA L, dan is A diagonaliseerbaar met A = PDP-1 zie hfst 9

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur BioIngenieur. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €2,99. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

80364 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€2,99
  • (0)
  Ajouter