Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
SOLUTION MANUAL FOR ENGINEERING MECHANICS DYNAMICS 6TH EDITION CHAPTER 1_11 BY ANTHONY BEDFORD, WALLACE FOWLER €29,07   Ajouter au panier

Autre

SOLUTION MANUAL FOR ENGINEERING MECHANICS DYNAMICS 6TH EDITION CHAPTER 1_11 BY ANTHONY BEDFORD, WALLACE FOWLER

 28 vues  1 fois vendu
  • Cours
  • ENGINEERING MECHANICS DYNAMICS
  • Établissement
  • ENGINEERING MECHANICS DYNAMICS

SOLUTION MANUAL FOR ENGINEERING MECHANICS DYNAMICS 6TH EDITION CHAPTER 1_11 BY ANTHONY BEDFORD, WALLACE FOWLER

Aperçu 4 sur 847  pages

  • 10 mai 2024
  • 847
  • 2024/2025
  • Autre
  • Inconnu
  • ENGINEERING MECHANICS DYNAMICS
  • ENGINEERING MECHANICS DYNAMICS
avatar-seller
Engineering
Mechanics Statics 6e
Anthony Bedford,
Wallace Fowler
(Solu�ons Manual All
Chapters, 100%
Original Verified, A+
Grade)
(Chapter 1-11)

, Chapter 1

Problem 1.1 In 1967, the International Committee Solution: The number of cycles in two seconds is
of Weights and Measures defined one second to be the 2(9,192,631, 770) = 18,385, 263, 540.
time required for 9,192,631,770 cycles of the transition Expressed to four significant digits, this is 18,390, 000, 000 or 1.839E10
cycles.
between two quantum states of the cesium-133 atom.
Express the number of cycles in two seconds to four sig- 18,390,000,000 or 1.839E10 cycles.
nificant digits.


Problem 1.2 The base of natural logarithms is Solution:
e = 2.71828183... . (a) Express e to three significant (a) The rounded-off value is e = 2.72.
digits. (b) Determine the value of e 2 to three significant (b) e 2 = 7.38905610..., so to three significant digits it is e 2 = 7.39.
(c) Squaring the three-digit number we obtained in part (a) and
digits. (c) Use the value of e you obtained in part (a) to
expressing it to three significant digits, we obtain e 2 = 7.40.
determine the value of e 2 to three significant digits.
(a) e = 2.72. (b) e 2 = 7.39. (c) e 2 = 7.40.
[Comparing the answers of parts (b) and (c) demonstrates
the hazard of using rounded-off values in calculations.]



Problem 1.3 The base of natural logarithms (see Solution:
Problem 1.2) is given by the infinite series The exact value rounded off to five significant digits is e = 2.7183. Let
N be the number of terms summed. We obtain the results
1 1 1
e = 2+ + + +.
2! 3! 4! N Sum
Its value can be approximated by summing the first few 1 2
terms of the series. How many terms are needed for the 2 2.5
approximate value rounded off to five digits to be equal 3 2.666...
to the exact value rounded off to five digits? 4 2.708333...
5 2.71666...
6 2.7180555...
7 2.7182539...
We see that summing seven terms gives the rounded-off value 2.7183.
Seven.




Problem 1.4 The opening in the soccer goal is 24 ft
wide and 8 ft high, so its area is 24 ft × 8 ft = 192 ft 2 .
What is its area in m 2 to three significant digits?
Solution:
2
A = 192 ft 2 ( 3.281
1m
ft
) = 17.8 m 2

A = 17.8 m 2

Problem 1.4



Problem 1.5 In 2020, teams from China and Nepal, Solution:
based on their independent measurements using GPS (a) The height of the mountain in kilometers to three significant digits is
satellites, determined that the height of Mount Everest is 8848.86 m = 8848.86 m ( 1000
1 km
) = 8.85 km.
8848.86 meters. Determine the height of the mountain m
to three significant digits (a) in kilometers; (b) in miles. (b) Its height in miles to three significant digits is

8848.86 m = 8848.86 m ( 3.281
1m
ft
)( 5280
1 mi
ft
) = 5.50 mi.
(a) 8.85 km. (b) 5.50 mi.




Copyright © 2024, 2008 by Pearson Education, Inc. or its affiliates.
1


BandF_6e_ISM_CH01.indd 1 12/04

, Problem 1.6 The distance D = 6 in (inches). Solution:
The value of M P is
The magnitude of the moment of the force
F = 12 lb (pounds) about point P is defined to be M P = FD
the product M P = FD. What is the value of M P in = (12 lb)(6 in)
N-m (newton-meters)? = 72 lb-in.

Converting units, the value of M P in N-m is

F 72 lb-in = 72 lb-in ( 0.2248
1N
)( 1 m ) = 8.14 N-m.
lb 39.37 in

8.14 N-m.

P

D

Problem 1.6



Problem 1.7 The length of this Boeing 737 is Solution:
Because 1 ft = 12 in, the length in meters is
110 ft 4 in and its wingspan is 117 ft 5 in. Its maxi-
mum takeoff weight is 154,500 lb. Its maximum range is (110 + 124 ft )( 0.3048
1 ft
m
) = 33.6 m.
3365 nautical miles. Express each of these quantities in
SI units to three significant digits. In the same way, the wingspan in meters is

(117 + 125 ft )( 0.3048
1 ft
m
) = 35.8 m.
The weight in newtons is

( 154, 500 ( 4.448
lb )
1 lb
N
) = 687,000 N.
One nautical mile is 1852 meters. Therefore, the range in meters is

(3365 nautical miles) ( 1 nautical
1852 m
mile
) = 6.23E6 m.
Length = 33.6 m, wingspan = 35.8 m,
Problem 1.7 weight = 687 kN, range = 6230 km.




Problem 1.8 The maglev (magnetic levitation) train
from Shanghai to the airport at Pudong reaches a speed of
430 km/h. Determine its speed (a) in mi/h; (b) in ft/s.
Solution:
(a)
v = 430
h
(
km 0.6214 mi
1 km
)
= 267mi/h .

v = 267 mi/h
(b)
v = 430
km 1000 m
h
(
1 km
)( 0.3048
1 ft
)( 1 h )
m 3600 s
= 392 ft/s.
v = 392 ft/s

Source: Courtesy of Qilai Shen/EPA/Shutterstock.
Problem 1.8




Copyright © 2024, 2008 by Pearson Education, Inc. or its affiliates.
2


BandF_6e_ISM_CH01.indd 2 12/04

, Problem 1.9 In the 2006 Winter Olympics, the men’s Solution:
15-km cross-country skiing race was won by Andrus (a)
15 km  60 min 
Veerpalu of Estonia in a time of 38 minutes, 1.3 seconds. v =  
Determine his average speed (the distance traveled (
38 +
1.3
60
)
min  1 h 
divided by the time required) to three significant digits = 23.7 km/h.
(a) in km/h; (b) in mi/h. v = 23.7 km/h


(b)
 1 mi 
v = (23.7 km/h) = 14.7 mi/h.
 1.609 km 
v = 14.7 mi/h




Problem 1.10 The Porsche’s engine exerts 229 ft-lb
(foot-pounds) of torque at 4600 rpm. Determine the
value of the torque inN-m (newton-meters).
Solution:

T = 229 ft-lb ( 0.2248
1N
)( 1 m ) = 310 N-m.
lb 3.281 ft
T = 310 N-m



Problem 1.10


Problem 1.11 The kinetic energy of the man in Solution:
Practice Example 1.1 is defined by 12 mv 2, where m
 1 slug  2
is his mass and υ is his velocity. The man’s mass is T = 1224 kg-m 2 /s 2   (
1 ft
 14.59 kg  0.3048 m )
68 kg and he is moving at 6 m/s, so his kinetic energy
= 903 slug-ft 2 /s.
is 12 (68 kg)(6 m/s) 2 = 1224 kg-m 2 /s 2. What is his
kinetic energy in US customary units? T = 903 slug-ft 2 /s




Problem 1.12 The acceleration due to gravity at sea Solution:
level in SI units is g = 9.81 m/s 2 . By converting units, Use Table 1.2. The result is:
use this value to determine the acceleration due to gravity
at sea level in US customary units.
g = 9.81 ( sm )( 0.3048m
2
1ft
) = 32.185...( sft ) = 32.2( sft ).
2 2




Problem 1.13 The value of the universal gravitational Solution:
constant in SI units is G = 6.67E−11 m 3 /kg-s 2 . Use Converting units,
this value and convert units to determine the value of G 3
in US customary units. 6.67E − 11 m 3 /kg-s 2 = 6.67E − 11 (
m 3 3.281 ft
kg-s 2 1m
)
 1 kg 
 0.0685 slug 
= 3.44E − 8 ft 3 /slug-s 2 .

G = 3.44E − 8 ft 3 /slug-s 2




Copyright © 2024, 2008 by Pearson Education, Inc. or its affiliates.
3


BandF_6e_ISM_CH01.indd 3 12/04

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur Succeed. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €29,07. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

80364 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!

Récemment vu par vous


€29,07  1x  vendu
  • (0)
  Ajouter