Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Solutions for Galois Theory, 5th Edition Stewart (All Chapters included) €28,86   Ajouter au panier

Examen

Solutions for Galois Theory, 5th Edition Stewart (All Chapters included)

 73 vues  0 fois vendu
  • Cours
  • Math
  • Établissement
  • Math

Complete Solutions Manual for Galois Theory, 5th Edition by Ian Stewart ; ISBN13: 9781032101583. (Full Chapters included Chapter 1 to 26)....1. Classical Algebra. 1.1. Complex Numbers. 1.2. Subfields and Subrings of the Complex Numbers. 1.3. Solving Equations. 1.4. Solution by Radicals. 2. The Fund...

[Montrer plus]

Aperçu 3 sur 118  pages

  • 15 février 2024
  • 118
  • 2023/2024
  • Examen
  • Questions et réponses
  • Math
  • Math
avatar-seller
Galois Theory
5th Edition by Ian Stewart



Complete Chapter Solutions Manual
are included (Ch 1 to 26)




** Immediate Download
** Swift Response
** All Chapters included

, Introduction 1



Introduction
This Solutions Manual contains solutions to all of the exercises in the Fifth Edi-
tion of Galois Theory.
Many of the exercises have several different solutions, or can be solved using
several different methods. If your solution is different from the one presented here, it
may still be correct — unless it is the kind of question that has only one answer.
The written style is informal, and the main aim is to illustrate the key ideas in-
volved in answering the questions. Instructors may need to fill in additional details
where these are straightforward, or explain assumed background material. On the
whole, I have emphasised ‘bare hands’ methods whenever possible, so some of the
exercises may have more elegant solutions that use higher-powered methods.



Ian Stewart
Coventry January 2022




1 Classical Algebra
1.1 Let u = x + iy ≡ (x, y), v = a + ib ≡ (a, b), w = p + iq ≡ (p, q). Then

uv = (x, y)(a, b)
= (xa − yb, xb + ya)
= (ax − by, bx + ay)
= (a, b)(x, y)
= vu


(uv)w = [(x, y)(a, b)](p, q)
= (xa − yb, xb + ya)(p, q)
= (xap − ybp − xbq − yaq, xaq − ybq + xbp + yap)
= (x, y)(ap − bq, aq + bp)
= (x, y)[(a, b)(p, q)]
= (uv)w

1.2 (1) Changing the signs of a, b does not affect (a/b)2 , so we may assume a, b > 0.
(2) Any non-empty set of positive integers has a minimal element. Since b > 0 is
an integer, the set of possible elements b has a minimal element.

, 2

(3) We know that a2 = 2b2 . Then

(2b − a)2 − 2(a − b)2 = 4b2 − 4ab + a2 − 2(a2 − 2ab + b2 )
= 2b2 − a2 = 0

(4) If 2b ≤ a then 4b2 ≤ a2 = 2b2 , a contradiction. If a ≤ b then 2a2 ≤ 2b2 = a2 ,
a contradiction.
(5) If a − b ≥ b then a ≥ 2b so a2 ≥ 4b2 = 2a2 , a contradiction. Now (3) contra-
dicts the minimality of b.
Note on the Greek approach.
The ancient Greeks did not use algebra. They expressed them same underlying
idea in terms of a geometric figure, Figure 1.





FIGURE 1: Greek proof that 2 is irrational.

Start with square ABCD and let CE = AB. Complete square AEFG. The rest of
the figure leads to a point H on AF. Clearly AC/AB = AF/AE. In modern notation,
let AB = b0 , AC = a0 . Since AB = HF = AB and BH = AC, we have AE = a0 + b0 = b,
0
say, and AF = a0 + 2b0 = a, say. Therefore a0 + b0 = b, b0 = a − b, and ab = ab0 .
√ 0 0
√ a , b are also integers,
If 2 is rational, we can make a, b integers, in which case
and the same process of constructing rationals equal to 2 with ever-decreasing
numerators and denominators could be carried out. The Greeks didn’t argue the proof
quite that way: they observed that the ‘anthyphaeresis’ of AF and AE goes on forever.
This process was their version of what we now call the continued fraction expansion
(or the Euclidean algorithm, which is equivalent). It stops after finitely many steps if
and only if the initial ratio lies in Q. See Fowler (1987) pages 33–35.
1.3 A nonzero rational can be written uniquely, up to order, as a produce of prime
powers (with a sign ±):
mk
r = ±pm 1
1 · · · pk
where the m j are integers. So
2mk
r2 = p12m1 · · · pk

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur mizhouubcca. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €28,86. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

77858 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€28,86
  • (0)
  Ajouter