Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Summary datascience €7,81   Ajouter au panier

Resume

Summary datascience

 1 vue  0 fois vendu
  • Cours
  • Établissement

Welcome to "Exploring Data Science: In-Depth Summaries," a comprehensive guide that delves into the diverse facets of data science. This book aims to provide concise yet thorough summaries of key topics in the field, making it an invaluable resource for both beginners and seasoned practitioners.

Aperçu 2 sur 15  pages

  • 17 janvier 2024
  • 15
  • 2023/2024
  • Resume
avatar-seller
Title: ”Exploring Data Science: In-Depth Summaries”
Introduction: Welcome to ”Exploring Data Science: In-Depth Summaries,” a
comprehensive guide that delves into the diverse facets of data science. This
book aims to provide concise yet thorough summaries of key topics in the field,
making it an invaluable resource for both beginners and seasoned practitioners.
Chapter 1: Foundations of Data Science
Definition of Data Science Historical Overview Importance in Various Industries
Key Concepts: Data, Information, Knowledge Chapter 2: Data Collection and
Cleaning
Types of Data: Structured and Unstructured Data Collection Methods Data
Cleaning Techniques Dealing with Missing Data Chapter 3: Exploratory Data
Analysis (EDA)
Purpose and Importance Descriptive Statistics Data Visualization Techniques
EDA Tools and Libraries Chapter 4: Statistical Analysis in Data Science
Basic Statistical Concepts Hypothesis Testing Regression Analysis Probability
Distributions Chapter 5: Machine Learning Fundamentals
Introduction to Machine Learning Supervised Learning Unsupervised Learning
Model Evaluation and Validation Chapter 6: Deep Learning
Neural Networks Basics Convolutional Neural Networks (CNN) Recurrent Neu-
ral Networks (RNN) Transfer Learning Chapter 7: Natural Language Processing
(NLP)
Basics of NLP Text Preprocessing Sentiment Analysis Named Entity Recogni-
tion Chapter 8: Big Data and Data Engineering
Introduction to Big Data Hadoop and Spark Data Pipelines Distributed Com-
puting Chapter 9: Feature Engineering and Dimensionality Reduction
Feature Engineering Techniques Principal Component Analysis (PCA) Feature
Scaling and Normalization Chapter 10: Model Deployment and Production
Deploying Machine Learning Models Model Monitoring and Maintenance Scal-
ability and Performance Considerations Chapter 11: Ethics and Responsible
Data Science
Ethical Considerations in Data Science Bias and Fairness Privacy Concerns
Responsible AI Practices Chapter 12: Emerging Trends in Data Science
Explainable AI (XAI) AutoML (Automated Machine Learning) Edge Comput-
ing in Data Science Quantum Computing and Data Science Conclusion: ”Ex-
ploring Data Science: In-Depth Summaries” serves as a comprehensive refer-
ence guide for individuals seeking to understand the intricacies of data science.
Whether you are a student, a professional, or an enthusiast, this book aims to
empower you with the knowledge needed to navigate the ever-evolving landscape
of data science. Happy exploring!


1

, User Chapter 1: Foundations of Data Science
Definition of Data Science Historical Overview Importance in Various Industries
Key Concepts: Data, Information, Knowledge ChatGPT Chapter 1: Founda-
tions of Data Science
Section 1.1: Definition of Data Science
Data science is a multidisciplinary field that involves extracting insights and
knowledge from structured and unstructured data. It combines elements of
statistics, computer science, and domain-specific knowledge to analyze complex
data sets. In essence, data science seeks to turn raw data into actionable insights,
informing decision-making processes.
Section 1.2: Historical Overview
The roots of data science can be traced back to statistics and computer sci-
ence, with key developments in the mid-20th century. However, the term ”data
science” gained prominence in the early 21st century, reflecting the growing
importance of managing and analyzing vast amounts of data. Technological
advancements, increased computing power, and the rise of the internet have
played crucial roles in shaping the evolution of data science.
Section 1.3: Importance in Various Industries
Data science has become a cornerstone in various industries, revolutionizing how
organizations operate and make strategic decisions. From healthcare and finance
to marketing and manufacturing, the application of data science has proven
invaluable. It enables businesses to gain a competitive edge, optimize processes,
and uncover hidden patterns that contribute to innovation and efficiency.
Section 1.4: Key Concepts: Data, Information, Knowledge
1.4.1 Data: Data refers to raw facts and figures, often unprocessed and lacking
context. It can be quantitative or qualitative, representing anything from num-
bers and dates to text and images. In data science, the quality of data is crucial,
and preprocessing is often required to extract meaningful information.
1.4.2 Information: Information is data that has been processed and organized
to provide context and relevance. It transforms raw data into a meaningful and
usable form. Data becomes information when it answers specific questions or
contributes to understanding a particular phenomenon.
1.4.3 Knowledge: Knowledge is derived from information when it is analyzed,
interpreted, and contextualized. It represents a deeper understanding of pat-
terns, trends, and relationships within the data. Knowledge is actionable and
serves as the basis for informed decision-making.
Understanding these key concepts is fundamental to navigating the world of data
science. As we proceed through this book, we will explore how these concepts
intertwine and contribute to the overarching goal of extracting valuable insights
from data.


2

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur kohava6620. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €7,81. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

80796 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€7,81
  • (0)
  Ajouter