Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Summary A4 sheets Quality Management (prof. Jannik Matuschke) €6,49   Ajouter au panier

Resume

Summary A4 sheets Quality Management (prof. Jannik Matuschke)

 7 vues  0 achat

Want to go prepared to your Quality Management exam of Professor Jannik Matuschke? Use these 3 A4 sheets to bring to your exam! As you're allowed to bring 2 recto verso A4 sheets, you still have one side free to make extra annotations or to put exercices. All the needed theory and needed steps to s...

[Montrer plus]

Aperçu 1 sur 3  pages

  • 4 janvier 2024
  • 3
  • 2023/2024
  • Resume
Tous les documents sur ce sujet (1)
avatar-seller
driesvdg
1. INTRODUCTION Solu:on to Errors: Increase sample size Varia8on
• Quality of design = degree to which quality characteris:cs are embedded into the product specifica:ons Sampling plans • Chance causes (= common causes) = small, unavoidable, random changes in the process; can only be re-
(Am vs Jap fridge, …) • Sampling by variables: numerical scale (con:nuous): more info, more complex moved by changing the exis:ng process; Assignable causes (= special causes) = Varia:ons in the process
• Quality of conformance = degree to which a product is manufactured according to the specifica:ons (tar- • Sampling by ayributes: present or not (yes/no scale): cheaper, requires larger sample size that have a specific cause; special circumstances àIf only common causes of variability, then the process
gets & balances determined in design) -> directly measurable, not directly associated with customers per- ATTRIBUTES (𝑟 = rejec:on rate) is ‘in (sta:s:cal) control’, or ‘stable’ ó external variability: that doesn’t have a common cause
cep:on of quality • Single sampling plan: Decision based on 1 sample of size n; acceptance number c / rejec:on number (c+1) • Over :me: 1. Process in control; 2. Sustained shi• = shi•ed once and stayed; 3. Dri•ing average = slowly
Cost of quality = cost of producing quality + cost of not producing quality (equilibrium: combined minimum) = r -> simple but expensive; distribu:ons of quality characteris:cs must be known the average is changing in one direc:on; 4. Vola:le average = constantly changing (some:mes L/R)
• COPQ = preven:on cost + appraisal cost (expenses of checking if product was produced right) • Double sampling plan: First sample: size n1 ; if necessary second sampling size n2 ; combine both samples Process control vs capability (P.Con.: gelijke verdeling gemiddelde, P.Cap.: dikte staart verdeling à dun J)
• CONPQ = internal failure cost (in plant) + external failure cost (defec:ve at customer) to decide ; acceptance nr c1 and c2 rejec:on nr r1 (c1<r1) • Capability of process to meet the requirements -> make sure that quality parameters within specifica:ons
3. MEASURING Take 1st sample (size n1): if D1 (= # defecGves) < c1 à accept, other: if D1>r1 à reject, other: if D1<r1: take a (in lines) => Process needs to be in control to be able to measure capability
Scales 2nd sample of size n2 and inspect, let D2 be the # defecGves: if D1+D2< c2 , then accept lot other: decline • Sta:s:cal process control -> goal: achieve process stability and improve process capability
• Nominal scale: categorize objects; Ordinal scale: Order btw objects, says nothing about distance • Mul:ple sampling plan: Con:nue taking samples un:l enough evidence collected for acceptance/rejec:on Sta8s8cal Process Control
Interval scale: comparable, no ra:o (T with °C scale); Ra:o scale: Comparable, meaningful 0 (lengths, of the lot ; generaliza:on of double sampling with smaller sample sizes • Monitor process à detect defect à im-
mass) • Sequen:al sampling plan (=con:nuous sampling): Item-by-item sampling ; number of inspected products prove quality
Human aspects vs instrumental aspects not known beforehand; may lead to 100% inspec:on (if acceptance/rejec:on line never exceeded) 𝑿, 𝑹 CONTROL CHART
• Human: high complexity -> more mistakes; low defect rate: more defects overlooked OC-Curve • R -chart (= range chart): The difference
• Instrumental: calibra:on= verify & adjust the performance of measuring device compared to traceable • Opera:ng Characteris:c curve -> shows probability that a lot with a certain frac:on defec:ve p will be ac- between the largest and smallest obser-
measurement standards cepted (=Pa(P)) and tells us how strict a sampling plan is, every sampling plan has an OC-curve!! va:on in one sample will be larger when
Varia8on • AQL: Acceptance Q level = highest defec:ve rate that is considered acceptable -> if % def units < AQL => there is a lot of varia:on. So this will keep
& & &
• 𝛼 !"#$% = 𝛼'(")*+# +𝛼,-$.*(-/-0# -> Varia:on = measurement error = true value - measured value accept; Producers risk: p(reject | %defec:ves <= AQL) = α (i.e. p(accept | %defec:ves <= AQL) = 1-α) track of varia:on (eg: sample (2,3,6,8,10)
Accuracy vs Precision • RQL: Rejec:on Q level = highest defec:ve rate that is considered tolerable -> if % def units >= RQL => re- ; R-chart: 10-2 = 8); 𝑋-chart: keeps track
• Accuracy = difference between the true value & the observed average (low accuracy = result of systema:c ject aka lot tolerance percent defec:ve (LTPD) -> Consumer’s risk: p(accept | %defec:ves >= RQL) = β of sample averages (29/5 = 5,8)
bias in the measurement) à hoe dicht liggen de punten rond het gemiddelde (midden vd cirkel) Single sampling plan (aMributes) • Central line = process mean ; Control lines = will depend on how much varia:on there is
• Precision = Closeness of repeated measurements (low Precision = result of random varia:ons built into • The effect of n (keeping c propor:onal to n) ; if n ­ then discrim- Designing 𝑿, 𝑹 control chart:
the instrument) à hoe dicht liggen de punten tegen elkaar? (ongeact hoe dicht tegen midden) inatory power ­. The more n the closer it moves towards the The I𝑿 chart (= mean chart)
Repeatability & Reproducibility (= R&R-analysis) ideal OC-curve
1. Compute 𝑋i mean for subgroup i of size n (for all i = 1, …, k)
• Repeatability = consistency of measuring instrument: EV= equipment varia:on; • The effect of c (keeping n constant) ; if c¯ then discriminatory ∑ 9: :::::::::::::::::::
9 <9 … 9
• Reproducibility = consistency of operator: OV = operator varia:on power », but discrimina:on moves towards lower values of p. 2. Compute process mean 𝜇 = 𝑥3 = = " !# %
; ;
• R&R-analysis = study of varia:on in measurement systems If you want to reduce the probability of an error, increase 3. Compute center line (CL) (F 1) and control limits (UCL, LCL) ( = ac:on lines) (F 2,3), dn and An from table!!
à Goal: how much of the total variability is due to the measurement system? n & the acceptance number (keep them propor:onal) a. Why 3𝜎 limits? Chance for process interrup:on due to false alarm should be small -> with 3𝜎 limits and
1. R&R analysis STEPS: Select m operators & n products normal distribu:on, it is 3/1000
&
2. Calibrate the measuring instrument b. Some:mes ‘warning lines’ at 𝑋3 ± 𝐴& 𝑅*
Each of the m operators ?
3. Let each operator measure each product in random order and will measure each of the R- chart ( = range chart)
repeat, r³2 ( Mijk= kth measurement by operator i on product j) n products, r 4mes 4. Compute Rk for subgroup k of size n (for all k)
4. Compute average measurement for each operator 𝑥1 (Formula 1) 5. Compute mean range 𝑅* = CL (F 4)
& difference btw largest & smallest average 𝑥2 (F 3) 6. Compute UCL and LCL (F 5,6)
5. Compute the range for each part & each operator Rij (F 4) + average range for each operator 𝑅1 (F 5) + a. Distribu:on of sample ranges is posi:vely skewed (rechts aflopend) -> UCL and LCL are asymmetrical
overall range 𝑅& (F 6) (K-values have a table!- OC-curve of 𝑿-chart
6. Compute part averages 𝑥3 (F 2) & the range of part averages Rp (F 7) • Describes how well the control chart discovers assignable causes of various magnitude, how likely it is that
7. Calculate a control limit (CL) on the individual ranges D4𝑅& (F 8) -> if range > CL -> look for assignable cause ?@
an observa:on, in the 𝑋-chart falls inside CL’s. Magnitude = shi• in process mean (k). 𝜇 → . Chance
If assignable cause & you have to delete that data and a5er that recompute steps 4-7 with 1 less n N < 10*n -> hypergeometric distribu:on; N ³ 10*n -> Bino- √0

mial distribu:on; n ³ 20 and p £ 5% the binomial distr. can 𝑃(𝐷 ≤ 𝑐 𝕀 𝑝 = 𝑝B ) = 1 − 𝛼 shi• remains undetected = 𝛽 = 𝑃(𝐿𝐶𝐿 ≤ 𝑋* ≤ 𝑈𝐶𝐿 ½𝜇 = 𝜇 + 𝑘𝜎)
8. Compute EV, OV, RR (nega:ve OV -> make 0) (F 9,10,12) EV = Repeatability, OV = Reproducibility
𝑃(𝐷 ≤ 𝑐 𝕀 𝑝 = 𝑝& ) = 𝛽 OC-curve of an R-chart
9. Compute Part Varia:on PV and Total Varia:on TV (F 11,13) (Rp = range of the part averages) be approximated by the Poisson distribu:on ( l = n*p)
+ • Describes how well the control chart discovers assignable causes of various magnitude. Magnitude =
10. Express EV, OV, RR as % of TV (EV/TV, OV/TV,…) & evaluate OR as % of To (tolerance) (OR/To) • How to design single sampling plan? Given AQL (=p1) and α, 𝑛 6
<10% acceptable R S T 𝑝 (1 − 𝑝B )0F6 = 1 − 𝛼 Change in the process standard devia:on (𝜆). 𝜎 → 𝜎B , 𝑤𝑖𝑡ℎ 𝜆 = 𝜎B /𝜎. Chance shi• remains undetected =
and RQL (=p2) and β, determine n and c (upper formula) 𝑥 B
10-30% acceptable, depending on cost & importance • If D is binomially distributed use: (lower formula) 6DE
+
𝛽 = 𝑃(𝐿𝐶𝐿 ≤ 𝑅 ≤ 𝑈𝐶𝐿 ½𝜎 = 𝜎B )
>30% not acceptable Nomograph: AQL and RQL connect with Pa(AQL), Pa(RQL) 𝑛 Interpre8ng 𝑿, 𝑹 control chart
R S T 𝑝&6 (1 − 𝑝& )0F6 = 𝛽
2 2 2 2 45 ! Double sampling plan (aMributes) 𝑥 • Never use 𝑋-chart before R chart is in control
OR EV , OV & RR as % of TV à = 100* ! ( Otherwise EV + OV + PV =/= 100) -> variance ra:os 6DE
!5
• Compute OC-curve: Find Pa (AQL) • For both R and 𝑋:
B
4.ACCEPTANCE SAMPLING = P(accept in 1st sample) + P(accept in 2nd sample) 8 points in a row on the same side of CL = mean of process has probably shi•ed (2 ∗ ( )C = 0,78% chance)
&
= P(D1≤1) + P(D1=2 and D2≤1) = P(D1≤1) + P(D1=2)*P(D2≤1) 6 points in a row in a run upward or downward = detect trend, a slow dri• is happening
Inspec8on: goal =/= es:ma:ng Q but decide acceptance/rejec:on
e.g.: n1 = 50, c1 = 1, r1 = 3, n2 = 100, and c2 = 3, with AQL=0.01 and RQL=0.08 14 points in a row in oscilla:on (op en neer) = cyclic behaviour
• 100% inspec:on: expensive, impossible when destruc:ve, cri:cal parts, only 80% detected
• Acceptance sampling: decide on a lot of N products, based on quality of a sample of n products taken • For only 𝑋-chart (because R-chart is not normal distr): divided into 3 zones: C (green): 68,26% (CL +/- 1 𝜎 );
from it. Problem: sample & lot may not have same % of non-conf. units. -> less expensive, less info, re- B (yellow): 27,20% (CL +/- 2 𝜎 ); A (red): 4,27%% (CL +/- 3𝜎 ); outside control limits: 0,27%
quires planning, risk making wrong decisions 2 of the 3 consecu:ve points in zone A (same side of CL)
• No inspec:on: defec:ve units almost never encountered, Q assurance through cer:fica:on 4 of the 5 consecu:ve points in zone A or B (same side of CL)
Quality control: tradi:onal approach vs. modern approach 8 consecu:ve points outside zone C
• Tradi:onal: Industrial revolu:on setup; Separate inspec:on at line's end; Goal: Ship only good, but costly 15 consecu:ve points in zone C
• Modern: Integrated produc:on and QC; Direct feedback for improvement; Worker owns quality; Emphasis Next: Find Pa (RQL) = same but other probability!
on automa:on Repeat for other points of the OC-curve 5.2 STATISTICAL PROCESS CONTROL part 2
Sampling techniques Double Sampling Plan is useful in “extreme situaGons”: very low or very high % of defecGves in lot 𝑿 − 𝑺 CONTROL CHART (à uses sample standard devia:on instead of the range with X – R chart)
• Random Sampling: Equal chance selec:on of units for inspec:on; Methods: random numbers, serial VARIABLES • Use when n>10, because range no longer suited to approximate 𝜎; Use when n is variable / the sample
codes, posi:on in container; Stra:fied Sampling: Division of the lot into subgroups (palet, box, loca:on); Single sampling plan (AQL is smallest mean emission level, RQL is highest) size varies; Use when stricter control of varia:on is needed
Random inspec:on of units within each subgroup; Systema:c Sampling: Random selec:on of a star:ng • Give assurance about average µ of quality characteris:cs X ; assump:on 1: X is normally distributed; 2: the 𝑺-chart
point; Inspec:on of every k-th product in the lot; Cluster sampling: pick 1 or more representa:ve sub- lower X, the beyer • For each subgroup i, compute si =
groups & inspect all units from these subgroups If μ < AQL: accept the lot with probability 1-α; If μ > RQL: accept the lot with probability β • The average of the m subgroup standard devia:ons is 𝑠̅ = Center line (CL) (F 4)
Sampling Errors -> Determine n & c using (F 3,4) and Z-table • Compute UCL and LCL: B3 and B4 instead of D3 and D4 (F 5,6)
• Systema:c Errors: Measuring bias (low accuracy measuring system); Non-homogeneous lots (varying pro- -> Measure the quality characteris:c for n units • if subgroup size is not constant, use weighted average approach to
duc:on factors, e.g. not produced by the same machines); Sampling bias (e.g., "convenience sampling") -> If the sample average 𝑥̅ is lower than c, then accept the lot, else reject the lot find grand average and standard devia:on; A3, B3 and B4 depend on
• Non-systema:c Errors (Example: Tennis Balls): Ques:on: Is it possible that 998 out of 1000 balls are within 5.1 STATISTICAL PROCESS CONTROL part 1 subgroup size n, they will now be different for each sample (now
specifica:ons? Any sample can lead to wrong decisions… Solu:on: increase sample size • Specifica8on Limits apply to every single unit & determine whether the customer wants it or not CL becomes a step func:on that changes from sample to sample!)
Hypotheses: H0 : Nul hypothese -> Current situa:on, Ha : what we want to prove is going on. à is determined at the start -> individual averages
𝑿-chart
Decision Rule: If H0 is wrong, choose Ha . If H0 is correct, s:ck with it. • Control Limits apply to groups of units & determine (via sample averages) if a process is stable and so
• Compute CL, UCL and LCL (F 7,8,9)
Type I Error: Reject a good quality lot (Reject H0 while H0 is true) (α: Probability of Type I error (Producer’s whether we should adjust the machine or not à control lines exceeded = adjustment needed
𝑿-Rm CONTROL CHART
risk) Typical value: α=0.05) • When making conclusion based on sample average & adjus:ng every:me -> the variability ­ à take sub-
***0 -> standard devia:on ¯ 𝜎6̅ = 𝜎. • When subgroup size 1 unit (n=1); When data becomes available too slowly for subgrouping (temperature
Type II Error: Accept a poor quality lot (Reject Ha while H0 is false) (β: Probability of Type II error (Con- group of size n & subgroup mean 𝑋
√𝑛 measurements) or when we want to act directly instead for wai:ng 5 errors (high value items)
sumer’s risk) Typical value: 0.05≤β≤0.10)

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur driesvdg. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €6,49. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

73314 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€6,49
  • (0)
  Ajouter