Algemene chemie Lenne Sannen
Hoofdstuk 1: De atomen
1. Samenstelling van het atoom
Atoom: (volgens nucleaire atoommodel)
▪ Positieve kern
o Meeste massa
o Kleinste gedeelte van volume
o Protonen: positief geladen deeltjes
Ongeveer dezelfde massa
o Neutronen: deeltjes zonder lading
▪ Negatieve elektronen
o Bewegen rond kern
o Grootste deel volume
o Kleinste massa
➢ Neutrale atoom: #protonen = #elektronen
Massa in atomaire massa-eenheden: 1u = 1,66 ⋅ 10−24 g *
Ladingen in elementaire ladingseenheden: (e). 1e = 1,60·10-19 C
Grootte orde diameters in nanometer: 1 nm = 10−9 𝑚
𝐴
𝑍𝑋 : → Massagetal A = geheel getal dat som v/d p+ en n in kern van atoom weergeeft
→ Atoomnummer Z = geheel getal, geeft #p+ in kern van atoom aan
Isotoop: atomen met zelfde #p+ in kern en dus ook zelfde #e-, maar verschillend #n en dus ook
verschillende massa. Hebben zelfde chemische eigenschappen
Relatieve atoommassa Ar : onbenoemd getal dat uitdrukt hoeveel keer de massa van dat atoom groter is
dan de atomaire massaeenheid*
* = 1/12e van de absolute massa van een koolstof-12-isotoop 126𝐶
(…% ·Ar )+(…% · Ar)+ …
Gemiddelde relatieve atoommassa =
100
2. Tabel van Mendeljev
Periodiek systeem : rangschikking die periodieke variatie in de eigenschappen v/d elementen weergeeft.
▪ Periode: horizontale rij (7)
▪ Groep: verticale kolom
Metalen: grote neiging om e- af te geven ter vorming van + ionen
➢ Meeste vb’en in hoofdgroepen IA en IIA (alkali en aardalkalimetalen)
Niet-metalen: neiging e- op te nemen ter vorming van – ionen
➢ VIA en VIIA
Metalloïden of semimetalen: vertonen zowel metaal- als niet metaalkarakter
➢ Langs scheidingslijn (niet-)metalen
Edelgassen: ongebonden atomen (in natuur)
➢ VIIIA: He , Ne , Ar, Kr , Xe , Rn
1
,3. Kwantummechanisch atoommodel
Elektronen vertonen eigenschappen van golven → golfvergelijking → MAAR moeilijk op te lossen, daarom:
→ Golffuncties: beschrijven niet echt plaats en snelheid, MAAR geven waarschijnlijkheid waar een e-
met bepaalde energie kan worden aangetroffen.
Orbitaal: ruimte rond kern waar dergelijk e- het meest waarschijnlijk aanwezig is.
Energie van e- is gekwantiseerd:
▪ Afhankelijk van energie kan e- in verschillende orbitalen rond kern van atoom zitten. Deze
orbitalen bevinden zich op bepaalde energieniveaus die onderling scherp gedefinieerd
energieverschil vertonen.
3.1 Atoomorbitalen en kwantumgetallen
Atoomorbitaal: golffunctie van e- in atoom
Hoofdkwantumgetal n: geheel getal [1 ; 8]
▪ Bepaalt energie van atoom
▪ Afmeting: hoe groter n, hoe groter orbitaal
▪ Schil : n = 1,2,3,4,5,… → K,L,M,N,O,…
Nevenkwantumgetal l: geheel getal [ 0 ; n-1 ]
▪ Onderscheidt orbitalen met zelfde hoofdkwantumgetal n maar verschillende vorm
▪ Subschil : l = 0, 1, 2, 3 → S, P, D, F
Magnetisch kwantumgetal ml : geheel getal [-l ; +l ]
▪ Onderscheidt orbitalen van zelfde schil en subschil maar met verschillende ruimtelijke oriëntatie
→ Samenvattende tabel:
4. Verschillende orbitalen
S-orbitalen
Golffunctie van 1S
▪ Als r = 0 → = maximaal
▪ Neemt exponentieel af voor stijgende r, NOOIT 0
▪ Sferische symmetrie: golffunctie 1s-orbitaal is zelfde waarde in alle punten even ver van
kern
▪ Niet echt fysische betekenis
→ ² = maat voor waarschijnlijkheid e- op bepaalde plaats aan te treffen op afstand r van de kern
▪ r = 0 → ² = max
▪ nooit 0
2
,Golffunctie 2s-orbitaal
▪ Orbitaal is groter, ook sferisch symmetrisch
▪ Als = 0 → geen kans om e- aan te treffen op die afstand
→ ² : e- met grote waarschijnlijkheid aanwezig in 2 gebieden
→ Alle s-orbitalen: bolsymmetrisch:
P-orbitalen
▪ Geen sferische symmetrie
▪ 2px , 2py , 2pz
➢ 2px heeft grootste elektronendensiteit langs x-as
➢ Golffunctie 2px = 0 voor yz-vlak
▪ Golffunctie : links = ene lob | rechts = andere lob
▪ Visuele voorstelling:
D-orbitalen
▪ 5 3d-orbitalen: 3dx²-y² , 3dz² , 3dxy , 3dyz , 3dxz
▪ Visuele voorstelling :
Radiale waarschijnlijkheidsverdeling :
▪ Waarschijnlijkheid om e- aan te treffen op een bepaalde afstand van de kern
Energiediagram (1e):
▪ Grondtoestand: laagst mogelijke energie
▪ Geëxciteerde toestanden: (aangeslagen) door opname energie
▪ Energie waterstofatoom EH = -cte 𝑛²
𝑍²
→ cte = 2,18 · 10-18 J z= kernlading
→ Beschrijft energie vh atoom relatief t.o.v.d. toestand waarin e- op een
∞ grote afstand vd kern verwijderd is
▪ Afstand kleiner → energieverlagende interactie
▪ Gedegenereerde orbitalen: toestanden beschreven door orbitalen met zelfde hoofdkwantumgetal
n hebben zelfde energie
5. Structuur van polyelektronische atomen
Elke e- heeft eigen golffunctie → noodzaak invoeren 4e kwantumgetal = spinkwantumgetal mS
5.1 Spinkwantumgetal mS
▪ Voor karakteriseren e-
▪ Onderscheidt 2 mogelijke oriëntaties vd elektronspin
▪ Waardes: + 12 of - 12
5.2 Uitsluitingsprincipe Pauli
▪ 2 e- in zelfde atoom kunnen nooit dezelfde set van 4 kwantumgetallen hebben.
▪ Gevolg: eenzelfde atoomorbitaal kan verdeling van 2e- beschrijven, MAAR deze hebben
tegenovergestelde spin
→ Gevuld orbitaal: 2e- met gepaarde spins
3
, 5.3 De opsplitsing van energieniveaus
Energie van e- bepaald door:
▪ Kernlading
▪ Afscherming kernlading door andere e- : maakt energie orbitalen minder negatief
▪ Waarde n & l
Repulsie (afstoting) tussen e- : zorgt voor hogere energie en verlaagt aantrekking tot kern
Effectieve kernlading Zeff : kernlading die effectief door e- wordt ervaren
Penetratie-effect: kans / vermogen om dichter bij de kern te zitten (als ze op dezelfde schil zitten)
▪ S>P>D>F
Verschillen energiediagram (2e) atomen met 1e diagram
1. Atoomorbitalen van polyelektronisch atoom hebben lagere energie
dan overeenkomstige atoomorbitalen waterstof
→ Gevolg van grotere kernlading EN grotere interactie e- en
kern
2. Verschillende atoomorbitalen met zelfde hoofdkwantumgetal n
hebben niet dezelfde energie
→ Gevolg van penetratievermogen en hebben dus ook
verschillende effectieve kernlading
▪ Verschillende orbitalen in bepaalde subschil hebben wél zelfde
energie: e- ervaren zelfde Zeff
5.4 Elektronenconfiguraties
Verdeling e- over verschillende atoomorbitalen
Algemene regels:
▪ Uitsluitingsprincipe: 2 e- in zelfde atoom kunnen nooit zelfde set van 4 kwantumgetallen hebben
▪ Hund: atoom in grondtoestand heeft configuratie met grootste #ongepaarde e-
▪ Opbouwprincipe: volgorde waarin verschillende subschillen moeten worden opgevuld om
configuratie vd grondtoestanden vd atomen te krijgen
➢ K 1s
L 2s 2p
M 3s 3p 3d
N 4s 4p 4d 4f
O 5s 5p 5d 5f
P 6s 6p 6d 6f
Q 7s 7p 7d 7f
Elektronenconfiguraties van atomen in grondtoestand
▪ Edelgasconfiguratie of octetconfiguratie: atomen met max #e- in valentie-schil
▪ [He] : gevulde K-schil
▪ [Ne] : gevulde L-schil
➢ Conf. [Ne] = [He] 2s² 2p6
▪ [Ar] : gevulde M-schil
▪ [Kr] : gevulde N-schil
▪ [Xe] : gevulde O-schil
▪ [Rn] : gevulde P-schil
▪ Transitiemetaal: element uit d-blok
4