Module 1 - CLV in Contractual Settings
Definition: CLV is the PV of future profits of one particular customer
We look at specific cohorts that started at t = 0
Survival function (prob that a customer is still active, thus compared to t = 0)
=
S(t) = P (T > t)
Retention rate (prob that a customer who was active in t − 1 it still active at the end of t, thus compared
to the last period)
=
S(t)
r(t) = P (T > t|T > t − 1) =
S(t − 1)
Geometric Model
Coin-flipping
Probability that a customer leaves (i.e. T ) at period t
P (T = t) = pt−1 (1 − p)
Thus, S(t) = pt
r(t) = p
CLV looks at new customers, but RLV looks at customers that did start before t = 0
RLV = already acquired customers = they tend to have lower churn rates than new customers
i.e. for customers with an age > 0 at t = 0
RLV right before renewal:
mp2 mp(1+d)
E[RLV ] = mp + (1+d) + ... = 1+d−p
RLV right after renewal:
You have to discount with one additional /(1 + d) , so it goes away in the upper term
E[RLV ] = mp
1+d−p
Ruse of heterogeneity
In a given cohort, the retention rate increases over time due to heterogeneity = sorting effect
CAC and ROI
Customer Acquisition Cost: to be profitable CAC < CLV =
marketing expenditures
CAC =
customers acquired
Return on Investment = ROI = prof it
cost = CLV −CAC
CAC
Shifted Beta Geometric Model
Model with a distribution of retention rates across customers; we have to write the survival function
in terms of θ
S(t|θ) = pt = (1 − θ)t
With the distribution of θ between 0 and 1 with parameters a and b
Beta Distribution:
θa−1 (1 − θ)b−1
f (θ|a, b) =
B(a, b)
With mean = a
a+b and variance = ab
(a+b)2 (a+b+1)
This gives the new survival function and retention rate:
B(a, b + t) b+t−1
S(t|a, b) = r(t|a, b) =
B(a, b) a+b+t−1
r(t) increases over time, depending on a and b
• small a and b: retention rate rises quickly but levels off quickly
• medium a and b: rate of increase in retention slows down
• large a and b: hardly any increase; almost a constant retention rate
• a and b relatively equal in value: symmetric beta distribution
2
, • b > a: skewed to the right; values are closer to 1
• a > b: skewed to the left; values are closer to 0
In this model, you can estimate using the maximum likelihood function
Calculating CLV with the sBG
Each term contributes less to CLV, because of discounting and the diminishing survival function
You need a suitably large T, to estimate the same E[CLV ] function as before (you can ignore the latest
terms because they are so small)
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur lisaholling1. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €5,44. Vous n'êtes lié à rien après votre achat.