Basismethoden in het Biomedisch Onderzoek 3
Analyse van DNA en genomics
DNA-sequentiebepaling
Brede toepassingen
- De novo genoom sequentiebepaling
o Ongekende genomen (nog geen referentiegenoom vh species)
o Bv Humaan Genoom project
o Nieuwe organismen (bv. Sars-CoV-2)
o Gedeeltelijk of volledig
- Resequencing
o Individuen tov referentiegenoom
o Verschillen tss individuen (SNPs): 3 miljoen vd 3 miljard basen versch
o Mutaties (ziekten)
o Construct verificatie
o Klinische toepassingen: diagnose, farmacogenetica, NIPT (niet invasieve prenatale test), …
- Sequentiebepaling als teller: aantallen DNA (of RNA) moleculen (zie RNAseq, ChIPseq,…)
De novo sequencing vd resequencing
- WGS = whole-genome sequencing
- WES = whole-exome sequencing
o = coderende sequentie
o = 1.5% van genoom
- Targeted sequencing = specifieke gewenste regio’s
- Transcriptoom: RNA → cDNA
1ste generatie sequentiebepaling
Maxam en Gilbert: chemische klieving methode
- Differentiële chemische klieving (door resctrictie-enzymen) van NZ in 4 versch reacties, gevolgd door scheiding
volgens grootte op polyacryl-amidegel en visualisatie via autoradiografie (mbv radioactieve merkers)
- Nadeel: relatief korte fragmenten, niet helemaal specifiek → sequentie niet altijd éénduidig
Sanger sequencing = synthese met dideoxy-keten terminatie
- Template/matrijs = gefragmenteerd genoom dat geamplificeerd wordt door cloneren of een specifiek fragment
dat geamplificeerd wordt met PCR
- Polymerase + primer + mengsel van 4 dNTPs + ddNTPs (elke ddNTP met versch fluorescente label)
o Reactie loopt door na inbouwen dNTP (deoxy-nt) → aan -OH kan verder gebouwd worden
o Reactie (keten) stopt na inbouwen ddNTP (dideoxy-nt) → aan -H kan niet verder gebouwd worden
Juiste verhouding dNTPs/ddNTPs
- Scheiding strengen op gel of capillair → elektroferogram
- Beperkt tot ~500 nt, moeite met herhalingen (vnl bij G-C: hebben 3 H-bruggen → plakken erg aan elkaar)
- Voor betrouwbaarheid: best 2 aparte reacties (FW of RV primer) om beide richtingen af te lezen
- Elektroferogram aflezen
o 1ste 30 bp niet afleesbaar: vaak te veel fouten
o Meestal 500-700 bp (max. tot 1000 bp) goede sequentie afleesbaar
o Software om af te lezen met kwaliteitsscores per base (Phred-score)
▪ Phred score Q = -10*log10(P) → vb: score van 10 (99% ac), 20 = 1 op 100 (99%), ev
▪ P = probabiliteit van foutieve base call
1
, o Mutatiedetectie
▪ Niet altijd even hoge pieken
▪ Sequentie-fout vs mutatie? → forward en reverse reacties ter bevestiging
Verwezenlijkingen met 1st generetion sequencing (Sanger)
- Human Genome Project (HGP)= grootste multinationale biologische project ooit (1990-2001 (draft)-2003 (final))
o Stalen: meerdere anonieme individuen
o Methode: hierarchical shotgun sequencing met Sanger methode clones in YACs, BACs, P1s, cosmiden
▪ Fragmeteren (mbv RE) en mapping (volgorde bep mbv probes)
▪ Automatische sample bereiding en sequentiebepaling door 20 centers over heel de wereld
o Nog steeds updates (verschillende ‘genome builds’)
- Human Genome sequencing (2001)
o Stalen: 5 individuen
o Methode: whole genome shotgun sequencing
o Random clones, geen mapping
- Nieuwe uitdagingen
o Volledige sequentie (telomeer tot telomeer)
o Meer genomen sequencen van meerdere species
o Meer individuele humane sequenties
o Persoonlijke genoomsequentie van iedereen
o Enorme mogelijkheden voor “personalized precision medicine”
▪ Kennis van DNA volgorde en SNPs → diagnose, prognose, preventie
▪ Farmacogenomics: verklaart en voorspelt of bepaalde individuen goed/slecht reageren op GM
▪ Inzicht in complexe multifactoriële aandoeningen (diabetes, kanker,..)
▪ Therapie op maat, bv al bij kanker
▪ Maar ook ethische aspecten (werkgevers, verzekeringsmaatschappijen,…)
o Probleem met standaard Sanger sequencing: throughput en kosten
2de generatie sequentiebepaling: short-read next-generation sequencing
- = short-read next-generation sequencing (massief korte stukjes DNA sequencen)
- doel: veel hogere throughput aan veel lagere kost → massale DNA sequentiebepaling mogelijk
- richtdoel: 1 humaan genoom op 1 toestel per dag voor <1000 USD (“thousand-dollar genome”)
- Ontwikkeling van nieuwe technologie met 3 pijlers:
o Parallelle detectie (Massive parallel sequencing)
▪ Cluster of polony = kopieën van een DNA template
▪ Klonale in vitro amplificatie van template (<> klassieke klonering)→ miljoenen kopieën van DNA
template per cluster
▪ Multiplexing: vele clusters tegelijk (<> 1 template/reactie)
o Miniaturisatie van reacties
o Integratie van het proces (pipeline): directe detectie (<> scheiding fragmenten via gelelectroforese)
- Verschillende commerciële platformen: zeer competitief, snelle evolutie (545/Roche, Illumina, Ion Torrent, …)
- Gebaseerd op 4 stappen: aanmaak DNA library, klonale in vitro amplificatie, sequencing/sequeniebepaling, data
analyse
Aanmaak DNA library
- Library = fragmentenbank = verzameling van te sequencen templates
- Types DNA library:
o Whole genome sequencing (WGS)
o Mate Pair libraries
o Whole exome sequencing (WES) of targeted sequencing:
aanrijking door hybridisatie aan probes (in oplossing of op array)
(zie panel A) of PCR-gebaseerd (zie panel B)
o Amplicon sequencing: PCR amplicons, bv. diagnostisch panel
o cDNA library (RNA-seq – Zie Hfst RNA)
2
, - Procedure
o Input DNA → kwaliteitscontrole (staal bereiden: DNA extraheren)
▪ Hoeveelheid en concentratie essentieel: vnl vorming adapter-dimeren
▪ Zuiverheid, bv spectrofotometrie A260/280 en A260/230 ratio
▪ Integriteit, bv capillaire elektroforese
o Random fragmentatie (sonicatie, nebulisatie, Dnase I,…): versch gootte en uiteinden
o End repair
▪ Blunt ends maken (T4 DNA polymerase en Klenow fragment)
▪ 5’ uiteinde fosforyleren (T4 polynucleotide kinase) = fosfaatgroep aanhechten met kinase om zo
adaptoren te kunnen aanhechten
▪ Eventueel 3’ non-template A aanhechten (Taq polymerase): proofreading
o Adapters aanhechten:
▪ Nodig voor PCR en sequencing primers + ev. indices/barcodes (per staal/molecule)
▪ Ligatie met fragment uiteinden (sticky end met 3’A overhang of blunt-end)
▪ Eventueel selectie van fragmenten met 2 versch adaptoren
▪ Enkele PCR cycli: fragment met adapters amplificeren, high-fidelity polymerasen met min
o Alternatief: tagmentatie → fragmentatie en adapters aanhechten in 1 stap
▪ Bv. in Illumina Nextera kit
▪ Transposase enzyme met dubbele activiteit: bindt op random plaatsen aan DNA → knipt en voegt
adapters toe
▪ PCR cycli met toevoeging extra barcodes aan adapters
o Size selection
o Doel: gewenste lengte inserts selecteren
o Klassiek: agarose gel-elektroforese: gewenste lengtes uitsnijden en opzuiveren met alcoholprecipitatie of
ionenuitwisselingskolom
o Nieuwere selectie-methodes: magnetische beads binden DNA, verhouding DNA/beads bepaalt gebonden
lengte
• 1-zijdig: korte fragmenten zoals adapter-dimeren wegfilteren
• 2-zijdig: wegfilteren kleine en grote fragmenten
Magnetische beads gaan DNA binden → DNA kan gecapteerd worden mbv magneten
o Kwaliteitscontrole
▪ doel: gewenste lengte en C inserts controleren, gewenste verhouding voor poolen van libraries
bep
▪ capillaire elektroferose bv Agilent Bio-analyer
Klonale in vitro amplificatie
- Doel: simultane, maar gescheiden, amplificatie van miljoenen fragmenten
- Verschillende methoden om scheiding tss clusters te behouden (vaste fase = solid-phase, emulsie, oplossing)
- Emulsie PCR (bv. 454, IonTorrent)
o Beads met oligonucleotiden complementair aan adaptoren
o 1 fragment laten binden per bead
o PCR reagentia toevoegen
o Olie-emulsie maken → duizenden aparte reacties in 1 buisje
o On--bead amplificatie via PCR
3
, 1000’en kopieën van zelfde DNA molecule gebonden op een bead
- Solid-phase bridge amplificatie (bv. Illumina)
o Vast opp met oligonucleotiden complementair aan de adptoren
o Fragmenten vormen lokaal bruggetjes via brownse beweging
o PCR
clusters (polonies) = 1000’en kopieën van zelfde DNA molecule op een 1-2 μm spot
- Solid-phase template walking ‘wildfire’ (bv. SOLiD)
o Opp met oligo’s complementair aan adaptoren
o Fragmenten laten binden
o Partiële denaturatie → vrije uiteinden ‘wandelen’ lokaal
o Amplificatie
1000den lokale clusters
- Rolling-circle amplificatie in oplossing (bv. Complete Genomics)
o Eerste van 4 adaptoren (rood) ligeren aan fragment dat men wil amplificeren
o Circulair DNA template maken via ligatie
o RE knippen downstream met type III endonuclease (bindt op een specifieke plek en knippen stukje
verder, type II knipt op plek van binding)
o 2e set adaptoren ligeren, circiuariseren en knippen → bindingsplaats voor nieuwe adaptoren → 2x herh
o Rolling circle amplificatie
o Clusters = nanoballs = concatemeren (lange DNA moleculen met meerdere kopieën van template na
elkaar)
o Hybridiseren op vaste drager
Sequencing van clusters/sequentiebepaling
- Sequencing-by-synthesis met reversible chain terminators (Illumina en GeneReader)
o Reversible chain terminators: fluorescent gemerkte nt dat een
terminatorketen heeft → 1 per keer inbouwen → aflezen stopt → adh van
kleur weet men welke nt is ingebouwd
o Terminatorgroep en fluorescente groep eraf gooien → opnieuw mengsel
van terminator-nt toevoegen
o Mog om miljoenen sequenties tegelijk te meten
4