Question 1
Before completing this assessment, you should have completed all the learning units of
MFP1501. Select two learning units that you have completed and screenshot the badges
you obtained as evidence that you completed the learning units then paste them to this
question. (20)
YOU NEED TO DO THIS PART YOURSELF
Question 2
Justify how the five principles for counting require learners to coordinate their knowledge
across three key ideas (number-word sequence, cardinality and one-to-one correspondence)
and to generalise them across different counting situations. (10)
The five principles for counting are fundamental concepts that help learners develop a deep
understanding of counting. These principles are crucial for children as they learn to count and
establish a strong foundation for later mathematical skills. They require learners to coordinate
their knowledge across three key ideas: number-word sequence, cardinality, and one-to-one
correspondence. Let's examine how these principles promote coordination of these ideas and
the generalization of counting skills across various situations:
• One-to-One Correspondence: This principle emphasizes that each object being
counted should be matched with a unique number word. For example, when counting
a group of apples, learners should say "one" for the first apple, "two" for the second,
and so on. This principle coordinates with the concept of a number-word sequence as
learners need to recite the number words in the correct order as they count. This
coordination ensures that learners understand the relationship between number words
and the objects they represent.
• Stable Order: Stable order is the idea that the number words should be recited in the
same order every time, regardless of the objects being counted. This principle
coordinates with the number-word sequence and ensures consistency and
predictability in counting. By consistently following the same sequence, learners can
generalize their counting skills to various counting situations, such as counting different
sets of objects or even different types of objects.
• Cardinality: Cardinality is the understanding that the last number counted represents
the total number of objects in the set. It coordinates with one-to-one correspondence
because when learners match each object to a unique number word, they can then
determine the total count by identifying the last number spoken. This understanding is
Les avantages d'acheter des résumés chez Stuvia:
Qualité garantie par les avis des clients
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur LolaJacobs. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €5,47. Vous n'êtes lié à rien après votre achat.