METABOLISME: KORTE SAMENVATTING
HOOFDSTUK 1: BIOMOLECULEN
Belangrijkste klassen biomoleculen: suikers (koolhydraten), lipiden (vetten), proteïnen, nucleïnezuren ® alle
levensvormen op aarde gebruiken die.
Suikers = monosachariden verbonden door glycosidebindingen ® di/poly/oligosachariden
• Stereochemie suikers: Fisherprojectie (suikers plat in vlak) & Haworth projectie (ringstructuur)
• Disachariden: sucrose, lactose, maltose
• Oligosachariden: belangrijk voor membranen & cel-cel interacties, veel mogelijkheden in soorten
bouwstenen & glycosidebindingen ® glycolipiden (aan vetten) & glycoproteïnen (aan eiwitten)
• Polysachariden: cellulose, chitine, hyaluronzuur, heparine
- Cruciale structuurgevende moleculen: cellulose & chitine
- Cellulose: belangrijkste structuurpolymeer planten (celwanden, houtvezels) MENS geen enzym dus afbraak door MO dikke darm
- Chitine: belangrijkste structuurpolymeer in ongewervelde dieren (cytoskelet insecten & pantser schaaldieren)
- Glycosaminoglycanen: hyaluronzuur & heparine ® sterk polair, negatief geladen binden veel water
- Hyaluronzuur: belangrijkste structuurpolymeer in glasachtig lichaam (oog), navelstreng, gewrichtsvloeistof
- Heparine: belangrijkste structuurpolymeer bloedvatwand ® natuurlijke antistolling
- Zeer handige moleculen voor energieopslag (opgebouwd in tijden van overvloed & afgebroken in tijden van tekorten) ®
bacteriën gebruiken dextranen, planten gebruiken zetmeel, dieren gebruiken glycogeen
Lipiden = vetzuren verbonden door ester + etherverbindingen, altijd hydrofoob effect
• Vetzuren: even # C-atomen, onvertakte staarten VERZADIGD enkele binding – ONVERZADIGD dubbele
• Triglyceriden: 3 vetzuren veresterd met 3 OH-groepen van glycerol
- Verzadigde vetzuren = dierlijke vetten met hoge smelttemperatuur ® meer Van der Waals krachten
- Onverzadigde vetzuren = plantaardige oliën of visolie, lage smelttemperatuur
- HOE meer dubbele bindingen HOE lager smeltpunt HOE hoger vloeibaarheid
• Membraanlipiden: glycerofosfolipiden & sfingolipiden
- Glycerofosfolipiden: verestering COOH-groepen van 2VZ aan 2 OH-groepen van glycerol, als 3e OH van glycerol veresterd is met
fosfaatgroep = fosfatidylgroep (choline, ethanolamine, serine, inositol)
- Sfingolipiden: VZ op amino-alcohol sfingosine & VZ of suikergroep op sfingosine
- Amfipathische structuren met polaire kop en apolaire staart ® bijeengedreven door dubbellagen
- FUNCTIE vorming biologische membranen, grenzen van cellen en subcellulaire organellen
- Glycolipiden: sfingolipiden met suikergroep (cerbrosiden, gangliosiden)
- Cholesterol: 4 ringstructuren (A,B,C,D) ® op A zit OH – op B zit dubbele binding - op D vertakte koolwaterstofgroep ® tussen A-
B en C-D ringen twee methylgroepen & in membranen niet-veresterd, in vetdruppels wel veresterd
• Vloeibaar mozaïekmodel biologische membranen: membraanlipiden, moleculen van dubbellaag hebben
zwakke aantrekkingskrachten tov. elkaar ® vloeibaar, integrale membraaneiwitten met amfipatische
opbouw met daaraan vaak perifere eiwitten, extracellulair suikergroepen op eiwitten & lipiden, lipid rafts =
stijvere structuren door aanrijken van verzadigde vetzuurketens en vrij cholesterol
Aminozuren: 20 soorten, bouwstenen van eiwitten, sommige zijn essentieel (opnemen via voeding)
• Opbouw: aminogroep + carboxylgroep ® geïoniseerd door zwitterionen, op centraal C-atoom 4 groepen
(amino, carboxyl, H-atoom, zijketen R) ® chiraal centrum
• Bijzondere gevallen: glycine (R = H dus geen chiraal centrum), proline (zijketen covalent verbonden met N)
• Onderverdeling: zijketens zijn verschillend, enkel L-aminozuren in menselijke eiwitten ingebouwd
• Zijketenmodificatie: reversibele covalente verandering chemische opbouw zijketen – fosforylering,
acetylering, methylering – specifieke enzymen ® verandering van eiwitfunctie (voor metabole regeling)
1
,Eiwitten
• Gecodeerd in genen in genoom ® 1 gen overeen met 1 uniek eiwit DUS unieke functie
• Opgebouwd uit aminozuren, regelmatige peptidebindingen, onderverdeling in apolaire/polaire zijketens
bepalen hoe ketting zich oprolt in waterwereld ® oligo (2-10AZ), poly (20-100), echte peptiden (100+)
• Primaire eiwitstructuur: aminozuursequentie + posities van S-bruggen tussen cysteïnezijketens
• Secundaire eiwitstructuur: positie van apolaire en polaire zijketens, a-helix & b-sheet ® 3D vormgeving
• Tertriaire eiwitstructuur: totale 3D van polypeptide (niet-covalente interacties zoals H-bruggen, dipool…)
• Quaternaire eiwitstructuur: niet-covalente eiwitten tussen kettingen van afzonderlijke eiwitten
Orthologe verwantschap primaire eiwitstructuur = vergelijken zelfde type eiwit in verschillende diersoorten
HOE groter sequentiehomologie HOE groter functioneel belang ® natuur heeft via natuurlijke selectie bepaalde
sequentie gestroomlijnd aan functionele behoefte. Systematische orthologie studie cytochroom: N = K . t
® K = verschillende AZ in orthologe sequentie DUS afstand tussen 2 soorten en gemeenschappelijk voorouder
Paraloge verwantschap primaire eiwitstructuur = vergelijking sequenties van eiwitten binnen één organisme
Paralogen = eiwitfamilieleden, reeksen eiwitten met onderlinge homologie ® men bepaald of het gaat om
transcriptvarianten (alternatief gebruik van 1 gen) OF polymorfismen (alternatieve gecodeerde inhoud 1 gen)
- Evolutionaire verklaring paraloge verwantschappen volgend Ohno: kopie is vrij om te evolueren ® nieuwe
functies, vandaar dieren 4 HOX-genenclusters op verschillende chromosomen ® HOX-genencluster bevat
paraloge genen bij ongewervelde dieren ontstaan door genduplicaties in 1 oer-HOX-gen & 2x gedupliceerd
- Bijna alles mensen +2 paralogen OMDAT 2 genoomduplicaties in oervertebraat, verlies van genen in tijd,
origineel goed bewaard en nog verantwoordelijk voor originele functie
Basen, nucleosiden, nucleotiden, nucleïnezuren
• Basen: bouwstenen nucleotiden & nucleïnuezuren ® 2 purinen (AG) en 3 pyrimidines (CTU)
• Nucleoside: zitten vast aan 1’ C-atoom van (desoxy)ribose
• Nucleotiden: nucleoside met 1-3 fosfaten op 5’C
• Nucleïnezuren: niet vertakte strengen van aan elkaar gebonden nucleotiden, suiker-fosfaat ruggengraat met 5’®3’
fosfodiësterverbindingen, basenvolgorde bepaalt unieke eigeschappen
• Dubbelstrengige DNA-structuur
- Basencomplementariteit: 2H-bruggen bij AT of AU & 3H-bruggen bij CG
- Basenpaarstapeling: hydrofobe platte schijven in centrum van helix
- Ruggengraat: elektrische ladingen en polaire groepen ® buitenzijde contact met water en eiwitten
- Periodiciteit: 10 BP per winding, strengen complementair en draaien antiparallel
Enzymen = katalysatoren van metabolisme
• Covalente bindingen heel stabiel & veel energie nodig om ze te breken
• Metabolisme vraagt om veranderen van bepaalde covalente bindingen in metabolieten ® snelle met.
• Veel chemische reacties verlopen te traag DUS versneld door katalysatoren waar stofwisseling gebeurt
• Mechanisme katalyse door enzymen
- Alle enzymen eiwitten met unieke 3D-structuur behalve ribozymes RNA
- Actieve site: specifieke binding substraten & helpen progressie van reactie
- Enzymen verlagen activeringsenergie ® stabiliseren transitietoestand ® reactie sneller
- Enzymen veranderen reactie-evenwicht NIET, enkel versnellen
- Katalysator niet verbruikt tijdens reactie: blijft beschikbaar om nieuwe reacties te katalyseren
- Enzym complementair aan transitietoestand = hoogst mogelijke energetische toestand
• Polymorfisme = verschillen tussen mensen onderling gebaseerd op kleine/grote verschillen in genoom
- ABO-gen: suikertransferase met 3 allelen ® plaatst specifieke suikergroepen op eiwitten en lipiden ® O-allel codeert eiwit
zonder enzymatische activiteit (RBC met O-AG) A-allel codeert eiwit werkt als N-acetylgalactosamine transferase (RBC met A-AG)
B-allel codeert eiwit werkt als galactosetransferase (RBC met B-AG) !!! Verandering geladen in apolair residu ® sikkelcelziekte
3 kenmerken biologische evolutie: fenomeen (verandering eigenschappen levensvorm ifv tijd), mechanisme
(nieuwe eigenschappen overerfbaar & gebaseerd ver. in genoominformatie), resultaat (ver. ® overlevingskans)
2
,HOOFDSTUK 2: WAT IS METABOLISME
Katabolisme = afbraak en verbranding biomoleculen
Anabolisme = opbouw van biomoleculen uit bouwstenen
Metabolisme = collectief van chemische reacties in levend organisme, met als doel organisme gezond houden
3 globale doelstellingen van metabolisme
• Genereren van voldoende chemische energie: ATP (energie in vorm van 2-energierijke fosfaatgroepen) ®
gemaakt door katabolisme & geleverd voor anabolisme
• Genereren van NADPH: reducerend vermogen in vorm van energierijk elektronenpaar nodig om complexe
moleculen te bouwen uit kleine onderdelen ® gemaakt door katabolisme & geleverd voor anabolisme
• Bouwstenen: nodig om complexe moleculen op te bouwen uit kleine onderdelen (kost ATP & NADH) ®
nodig voor anabolisme
Metabole wegen & metabole flux
• Metabole weg = logische volgorde van chemische reacties met beschrijving van metabolieten die chemisch
veranderen, enzymen die chemisch katalyseren en reactiemechanismen
• Metabole flux = aantal metabolieten dat op één punt van weg per tijdseenheid passeert, meestal geregeld
door instroom (meest kritische parameter hiervoor is beschikbaarheid/activiteit bepaald enzymen)
Katabolisme & anabolisme ® opdeling soms niet mogelijk
• Katabolisme: als doel ATP voorzien ® afbraak complexere biomoleculen, meer E uit vetten dan suikers
PROCESSEN vetvertering, eiwitvertering, b-oxidatie, glycogenolyse, glycolyse, oxidatieve decarboxylering,
Krebscyclus, oxidatieve fosforylering
• Anabolisme: biosynthese nieuwe moleculen vanuit kleinere bouwstenen ® mens bepaalde bouwstenen in
voeding nodig omdat die zelf niet kunnen maken (essentiële VZ&AZ) + energiebron om te compenseren
voor energie-uitgaven ® voor anabolisme ATP en reducerende elektronen nodig
PROCESSEN transcriptie&replicatie, eiwitsynthese, glycogeensynthese, glucogenogenese,
pentosefosfaatweg, cholesterolsynthese, vetzuursynthese, Krebscyclus
3 fundamentele verschillen tussen verbranding metabole/fossiele brandstof
Kachel: 1 stapsreactie, hoge activeringsenergie, alle energie Skeletspier: opdelen in oxidatieproces in veel
® warmte, hogere temperatuur nodig, hout gaat niet deelprocessen, katalyse (verlaging activerings-energie),
spontaan verbranden, activerings-energie is lucifer dus opvangen van potentiële energie in nuttige dragers
ontstaat veel water ® veel botsingen dus hout verbranden zoals NADH, FADH2, lagere temperatuur nodig
3
, Adenineribonucleotiden als dragers van nuttige groepen
• Al rol in primordiale soep: ribonucleotiden komen in alle levensvormen op aarde voor & bestaan van
ribozymen (RNA als katalysator) ® primitieve ‘RNA-wereld’ = voor eerste cel op aarde was er al een
primitief leven van ribonucleotiden (chemische dragers Epot), ribozymen en RNA-dragers van informatie
• Later evolueerde vanuit primitieve RNA-wereld een systeem met eiwitten ® door evolutie van
lipidendubbellagen ontstonden kleine compartimenten van zichzelf organiserend leven: 1e cellen
ATP = nuttige drager van chemische energie – ontstaat op 2 manieren
1. Fosforylering op substraatniveau (10%): transfer chemische energierijke fosfaat van metaboliet X-P naar
ADP, overal in cel (cytoplasma), spiervezel P van creatinefosfaat naar ADP bij arbeid ® ATP
2. Oxidatieve fosforylering (90%): koppeling ADP met Pi, binnenste mitochondriale membraan, verbranding
van brandstof levert energerijke elektronen ® redoxreacties in complexen, protonengradiënt, ATP-synthase
Transfer energierijke fosfaatgroep: bewegen van ladingen & mate van entropie moleculaire elektronenwolk
- NADH hogere energie, geen resonantie, verlies wanorde ® 2 vaste dubbele bindingen
- NAD+ lagere energie, resonantie, dubbele bindingen uitgesmeerd over nicotinamidering
- FAD+ meer resonantiemogelijkheden
- NADP+ wordt opgeladen met energierijk elektronenpaar door twee redoxreacties van pentosefosfaatweg en
door malic enzym ® opgeladen NADPH staat energierijke elektonenpaar af tijdens anabole proces van
reductieve biosynthese ® heeft fosfaatester op ribose die ook adenine draagt
- Co-enzym 1 wordt opgeladen met energierijke acylgroep ® opgeladen acylgroep: in metabolisme verbruikt
ZOALS in Krebscyclus (katabolisme) of als bouwsteen voor VZ- en cholesterolsythese (anabolisme)
Uridine-ribonucleotiden als drager van geactiveerde suikers
• Suiker-fosfaatester wordt metabool geactiveerd met UTP ® UDP-suiker DAN specifiek suiker-transferase
draagt geactiveerde suiker op groep
• Adenine-ribonucleotiden niet enige nuttige dragers, ook uracildragers (UDP-glucose: glucosefosfaat vast aan
UMP ® UMP-galactose door UDP koppeling aan galactose-1-fosfaat) ® glycogeensynthese & glycolipiden
Regeling lichaamsmetabolisme
• Torpor = verminderde activiteit, gepaard met lage lichaamstemperatuur & ruststofwisseling (korte periode)
• Winterslaap = langdurige daling lichaamstemperatuur & veel tragere ruststofwisseling
• Hormonen die lichaamsmetabolisme regelen: hyperthyroïde & hypothyroïde
- Hyperthyroïde (te veel schildklierhormoon): gestegen zuurstofverbruik, ruststofwisseling & lichaamsT
- Hypothyroïde (te weinig schildklierhormoon): gedaald zuurstofverbruik, ruststofwisseling & lichaamsT
• Hormonen regelen lichaamsmetabolisme bij fluxbepalende enzymen van metabole wegen ® die zijn vaak
verantwoordelijk voor instroom van metabolieten, katalyseert vaak onomkeerbare reacties ® regeling kan
gaan om aantal enzymen te veranderen OF activiteit enzymen te veranderen OF combinatie
• Mechanismen van metabole regeling
- Snelle effecten via membraanreceptoren ® signaaltransductie ® allosterische controle of (de)fosforylering bestaande enzymen
(insuline&glucagon)
- Trage effecten via nucleaire receptoren celkern ® veranderde transcriptie genen die coderen voor enzymen of door regeling van
translatie mRNA ® veranderde genexpressie (cortisol, oestrogeen, progesteron)
- Peptidehormonen kunnen membraanreceptor binden en intracellulair signaal stimuleren ® verandering metabole flux (ver.
chemische structuur enzymen & activiteit verandert metabole flux)
- Steroïdhormonen bereiken kern door binding aan nucleaire receptoren en manipuleert translatie & mRNA-productie ® moet
eerst genoom modificeren, om dan enzym te modificeren dan metabole flux en dan pas functie = traag
- Fluxbepalende stap belangrijkste vorm regeling metabolisme = snelheidsbepalende stap ® instroom bepaald door fluxbepalend
enzym, ontstaat systeem van instroombeperking waarvan grootte afgestemd wordt op precieze behoefte van moment
4