Theorie van alle powerpoints + aantekeningen hoorcolleges in 1 overzichtelijke samenvatting die antwoord geven op de examenvragen die vooraf gegeven worden.
Het leren van deze samenvatting is voldoende om alle lessen te verwerken en te slagen voor het examen (17/20 in 1ste zit)
PHARMACEUTICAL MEDICINE
Pharmaceutical medicine (farmaceutische geneeskunde) = de medisch-wetenschappelijke discipline die
zich bezighoudt met het ontdekken van de ontwikkeling, evaluatie, registratie, monitoring en medische
aspecten van het op de markt brengen van geneesmiddelen voor het welzijn van patiënten en de
gezondheid van de gemeenschap. Ze is verantwoordelijk voor het waarborgen en handhaven van normen
in de discipline en heeft als zodanig een curriculum ontwikkeld voor hogere medische opleiding om
specialisten uit te rusten met de uitgebreide vaardigheden en competentie die door de industrie steeds
vaker worden geëist voor het algemeen belang.
The Drug Development Process (De Hoon)
Het drug development proces bestaat uit 2 grote fases:
1. Exploratory fase
= preklinisch en eerste klinische ontwikkelingsproces tot PoC. Veiligheid en efficaciteit getest.
Proof of Concept / Proof of Principle een realisatie werkwijze of demonstratie om
sommige begrippen te verifiëren
2. Confirmatory fase
= NME heeft waarschijnlijk een toegevoegde waard, nu is het doel om een potentiële therapie
specifiek aan de patiënt aan te bieden (vanaf fase 3, bevestiging dat GM veilig & efficient is)
1) Non clinical research
- Ontdekking
- Dierproeven / in vitro testing
- Synthese en formulatie hoe kan een product geformuleerd worden? (vloeistof, tablet?)
2) IND = investigational new drug
- Eerste stap in het testen van een nieuw farmaceutisch compound in mensen
- Indiening bij FDA door de sponsor van het GM die informatie bevat over het nieuw GM, voor
het testen van veiligheid en doeltreffendheid in klinische proeven op mensen getest => GM
komt voor de 1ste keer voor in studies op mensen
1
, 3) Clinical studies
Kan tot 10 jaar duren
- Fase 1: aantonen dat het molecuul veilig is
- Fase 2: laten zien dat het molecuul doet wat het moet doen
- Fase 3: bevestigen in grote onderzoeken
4) NDA = new drug application / BLA = biologics license application
(NDA= nieuwe medicijnaanvraag & BLA= biologische vergunningsaanvraag)
- Toestemming aanvragen om GM op de markt te brengen
5) NME = new molecular entity
= Drug die alle fases van ontwikkeling doorlopen heeft en goedgekeurd is door FDA om op de
markt te brengen.
6) Post approval = toezicht na goedkeuring, nadat het molecuul op de markt is
- Fase 4: alle vreemde bijwerkingen melden. Zeldzame bijwerkingen worden aan de bijsluiter
toegevoegd. Medicijnen kunnen worden ingetrokken.
GLP = good laboratory practice
Guideline om niet-klinisch onderzoek (data verzamelen, …) op een juiste manier te doen.
Gebaseerd op screening processen: de meest belovende NME’s worden toxicologisch getest in
(niet)-knaagdieren
Om over te gaan van pre-klinische naar klinische studies wordt gekeken naar de data die verkregen
zijn via GLP
GCP = good clinical practice
Guideline om klinische studies goed uit te voeren zodat men transparante data verkrijgt
GMP = good manufacturing practice
Guideline om drug correct te produceren
The drug life cycle 3 life periods
Volledige proces kan tot 10-15 jaar duren + kost heel wat geld maar patent op drug blijft maar 20 jaar (en
geldt van zodra aanvraag voor nieuw molecule wordt ingediend). Bedrijven willen de kosten voor drug
development reduceren zodat hetgeen ze verdienen aan het GM voldoende is om de kosten te coveren.
2
,Nieuwe wetgeving in Europa: CTD CTR (op 31jan 2023)
- CTD = clinical trials directive
- CTR = clinical trials regulation gepubliceerd in 2014 => heeft 9 jaar geduurd om dit
elektronisch systeem in gang te steken (ligt aan luiheid van Europa)
3 waves of innovation in drug development
1) Small molecules
- Een groot aantal verbindingen moet gescreend worden
- Vaak off-target effects
- Vb statines: binden en inhiberen enzyme die pre cholesterol omzet naar cholesterol in
hepatocyt waardoor cholesterol ↓ en LDL-R ↑
2) Biologics
- Heel target specifiek (de meeste GM op de markt zijn biologicals)
o Vb vaccins, antilichamen
- Groter end dus complexer dan small molecules
- Bijna geen nevenwerkingen (indien wel komt dit door excessive on-target effect in plaats van
off-target effect zoals bij small molecules)
- Vb 2de golf cholesterolverlagende medicijnen: mAb die binden aan PCSK9 (reguleert LDL-R
expressie). PCSK9 kan niet meer binden met LDL-R (dus geen internalisatie en vernietiging
receptor) LDL-R ↑ = meer LDL opname
3) Genetic medicine
- Complexer om te produceren, veel expertise nodig
- Vb siRNA: complementair aan RNA van interesse => blokkeert expressie (siRNA blokkeert
expressie van PCSK9 eiwit)
- Vb RNA vaccins endogene expressie van een viraal antigen waartegen een immuunreactie
komt blokkeren
- Extreem efficiënt maar duur
- Belangrijk in zeldzame genetische ziektes probeert onderliggende genetische defecten te
herstellen
Drug Design and Discovery (De Witte)
1000’en compounds gescreend preclinical pharmacology preclinical safety clinical pharmacology
& safety
A. First things first (management)
- Strategisch: is het wenselijk om te doen?
o Onvervulde medische nood?
o Markt-analyse: kansen, risicobeoordeling
- Wetenschappelijk / technisch: kan het gedaan worden? (belangrijke vraag!)
o Wat zijn de targets, beschikbare modellen?
o Hebben we de compounds? Zijn er patent problemen?
o First-in-class (GM met nieuw & uniek mechanism of action) of fast follower (=
analoog van bestaande drug synthetiseren in de hoop een compound met beter
3
, profiel te krijgen dan het originele GM) of me-too drug (toevoeging GM aan
categorie waar er al veel van zijn, vb pijnstillers)?
- Operationeel: kunnen we het doen?
o Staff en expertise (hebben we de juiste wetenschappelijke achtergrond?)
o Faciliteiten en kosten (is er genoeg geld?)
B. Objective Drug Discovery & Design
Om farmacologisch actieve stoffen te identificeren
o Voor welke er duidelijke indicaties zijn dat zij het farmacologische doelwit in het lichaam in
voldoende hoeveelheden bereiken zodat zij het gewenste effect kunnen uitvoeren ZONDER
TOXICITEIT.
In het begin best flexibel, tot aan preclinical development, dan strikt gereguleerd.
1) PHENOTYPIC DRUG DISCOVERY
In vitro antiproliferation assay (cells)
o Assay om compound met antitumorale werking te vinden.
o Gebaseerd op het feit dat tumorcellen prolifereren op een ongecontroleerde manier, tenzij
gebruik gemaakt wordt van een cytotoxisch middel.
o Onderzoekers isoleren tumorcellen van tumorbiopsies. De tumorcellen prolifereren in een 96-well
plaat. De cellen kunnen exposed worden aan compounds, in hoeverre inhiberen deze compounds
de proliferatie? De cellen zijn ook metabolisch actief waardoor ze blootgesteld kunnen worden
aan een kleurloze compound, maar omgezet worden in een gekleurde compound (stain). Hoe
meer cellen aanwezig = hoe sterker de kleur.
4
, In vivo antitumoral assay (animal)
o Gebruik van dieren = kosten stijgen dramatisch!
o Je start met een in vitro assay om een tumor cellijn te selecteren die gevoelig is aan het
compound, dan injecteer je die tumorcellen onder de huid van een naakte muis (deze zijn
immuun deficiënt, anders zou er geen tumorgroei zijn). Onder de huid zie je de tumorcellen die
prolifereren je ziet een bult verschijnen onder de huid. Met een kaliber kun je de groei van de
tumor in functie van de tijd volgen. GM testen op tumor tumorgroei zal niet zo snel zijn als het
compound dagelijks wordt gegeven.
o Ook het lichaamsgewicht van de muizen worden opgevolgd om te zien of het compound niet
toxisch is.
2) TARGET-BASED DRUG DISCOVERY
In vitro kinase assay (enzyme)
o Bij overexpressie van bepaalde kinases zou een normale cel transformeren in een kankercel
daarom is kinase activiteit vaak een target voor kankerceltherapie. Inhibitie kinase =
verlaging kans op het ontstaan van een kankercel.
o ELISA procedure: synthetisch polypeptide immobiliseren op 96-well plaat.
o Kinase enzyme + ATP toevoegen: synthetisch polypeptide wordt door kinase gefosforyleerd
(dit zie je niet).
o Monoclonaal Ab gelabeld met peroxidase (HRP) herkent gefosforyleerd peptide enzyme
(HRP) zal een compound (TMB reagent) omzetten in een kleurrijke compound. Hoe meer P-
peptide, hoe intenser de kleur
o Kinase reactie wordt voorkomen door een inhibitor. Blauw welletje = controle, in andere
welletjes vermindert de intensiteit van de kleurreactie omdat het kinase de peptide niet
meer kan fosforyleren
= HTS (high throughput screening)
In vitro kinase assay (reporter cell line) = PathHunter cell-based assay (Eurofins)
o Tyrosine kinase receptoren (TKR) zijn gelokaliseerd op het membraan, aan de cytosolische
kant van het membraan is een proteïne kinase (PK) aanwezig. In het cytosol is ook nog een
ander enzyme aanwezig: enzyme acceptor (EA) = fusieproteïne met SH2 (= specifiek domein
voor adaptor proteïnen). Binding ligand aan TKR dimerisatie = autofosforylatie
gefosforyleerde domeinen zullen herkend worden door de SH2 domeinen en het EA+SH2
proteïne komt in de buurt van TKR op het membraan en komt in contact met het PK. Enkel
wanneer de 2 proteïnen gelinked zijn wordt functioneel beta-galactosidase gevormd.
Toevoegen van Lugal: B-galactosidase splitst glycon af => vorming D-luciferin. Toevoegen
Luciferase + ATP (en zuurstof nodig): luciferin wordt omgezet in de geoxideerde vorm
licht uitgezonden. = chemiluminescence assay. Hoe meer licht = meer luciferin = meer B-gal
activiteit = meer P tyrosines. Als je een compound toevoegt die fosforylatie tegengaat zie je
minder licht!
In silico drug design (PC)
o Design/ontwerp door computationele methode: het is mogelijk om onder specifieke
omstandigheden een specifiek proteïne te kristalliseren. Indien deze kristallen geanalyseerd
worden door een X ray diffractie methode kan je gedetailleerde structurele informatie over de
conformatie van het proteïne verkrijgen. Je kan ook een inhibitor co-kristalliseren samen met een
proteïne zodat je je molecule van interesse kan ontwerpen.
5
, PHENOTYPIC DRUG DESIGN TARGET-BASED DRUG DESIGN
= empirische, holistische (focus op cel of = rationele, moleculaire methode gebaseerd op
organisme en niet op een specifiek target) kennis van het patho-mechanisme. Deze kennis komt
methode gebaseerd op observationele van fundamentele biomedische research
eigenschappen (read-outs) van een organisme (cel (academisch).
of dier).
Voordeel:
Voordeel: - High throughput mogelijk
- ‘target-unbiased’ = geen kennis nodig - Monoclonale Ab met hoge affiniteit voor
over patho-mechanische details target
- Vergroot kans op first-in-class GM - Meer kans op follower drugs en biologicals
- ADME van compound wordt indirect - Rationale methode: je kent het target
getest (intellectueel aantrekkelijk)
Nadeel: Nadeel:
- Geen kennis over target maakt het - Is het target gevalideerd en relevant in
moeilijk om structuur te optimaliseren grotere context? = validation of target
- Vaak ‘low throughput’ aanpak (slechts (want lichaam kan compenseren voor
aantal cellen testen) effect van compound)
Hoe kan je een target valideren? loss-of-function vs inhibitie methode
Loss-of-function vs inhibition
Inhibitor moet selectief en niet-toxisch zijn. Vooraleer je een selectieve inhibitor in een vroege fase van
drug discovery gaat zoeken kan je enkele simpele tricks gebruiken om te kijken of je target weldegelijk
een goed target is.
- Crispr-Cas9
- siRNA antisense
KO van gene of interest specifiek proteïne wordt niet meer tot expressie gebracht als proteïne een
goed target is voor farmacologische inhibitie zou je reversal of pathological phenotype moeten zien
wanneer je het proteïne verwijdert, dit komt op hetzelfde neer als het proteïne inhiberen.
Loss-of-function is makkelijker dan het maken van een specifieke inhibitor tegen het proteïne. Een
selectieve inhibitor vinden vergt veel werk en geld. Dus vooraleer je compounds gaat zoeken, eerst target
valideren!! (essentieel!!)
Chain of translatability
Gedeelde mechanistische basis (construct validiteit) beschikbaar tussen:
- preklinisch ziektemodel (assay)
- assay-readout (wat gemeten wordt)
- menselijke pathofysiologie
hoge voorspellende validiteit (high predictive validity) wanneer chain of translatability aanwezig is!
Incomplete kennis is een limitatie voor validatie!
o Bepalen relevantie menselijke ziekten bij transgene muizen is de 1 ste stap in creatie van
chain of translatability
o Chain of translatability benadrukt dat PDD mechanistisch geïnformeerd en gevalideerd
moet zijn voor relevantie van ziekte.
Soorten validiteit:
6
Les avantages d'acheter des résumés chez Stuvia:
Qualité garantie par les avis des clients
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur academic88weapon. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €16,99. Vous n'êtes lié à rien après votre achat.