Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
A wide variety of natural phenomena such as projectile motion, the flow of electric current, and the progression of chemical reactions are well described by equations that relate changing quantities. As the derivative of a function provides the rate at wh €7,68   Ajouter au panier

Cas

A wide variety of natural phenomena such as projectile motion, the flow of electric current, and the progression of chemical reactions are well described by equations that relate changing quantities. As the derivative of a function provides the rate at wh

 1 vue  0 fois vendu
  • Cours
  • Établissement

A wide variety of natural phenomena such as projectile motion, the flow of electric current, and the progression of chemical reactions are well described by equations that relate changing quantities. As the derivative of a function provides the rate at which that function is changing with respec...

[Montrer plus]

Aperçu 3 sur 26  pages

  • 7 août 2023
  • 26
  • 2023/2024
  • Cas
  • P. howard
  • A
avatar-seller
Modeling with ODE
P. Howard
Fall 2009


Contents
1 Overview 1

2 Compartment Analysis 2

3 Chemical Reactions 4
3.1 Elementary Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Complex Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Rates of reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Determining Reaction Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.5 Carbon Dating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Population Dynamics 10

5 Newtonian mechanics. 17
5.1 Newtonian Mechanics in Polar Coordinates . . . . . . . . . . . . . . . . . . . 20

6 Hamilton’s Method 21

7 Variational Methods 24


1 Overview
A wide variety of natural phenomena such as projectile motion, the flow of electric current,
and the progression of chemical reactions are well described by equations that relate changing
quantities. As the derivative of a function provides the rate at which that function is changing
with respect to its independent variable, the equations describing these phenomena often
involve one or more derivatives, and we refer to them as differential equations. In these
notes we consider two important aspects in the theory of ordinary differential equations:
1. Developing models of physical phenomena; and 2. Determining whether our models are
mathematically “well-posed” (do solutions exist? are these solutions unique? do the solutions
we find for our equation genuinely correspond with the phenomenon we are modeling).



1

, Solutions to ordinary differential equations cannot be determined uniquely without some
outside condition, typically an initial value or a boundary value. In order to understand the
nature of this information, consider the general first order equation

y ′ = f (t, y), (1.1)

for which ′ denotes differentiation with respect to t. Assuming f (t, y) is sufficiently dif-
ferentiable, we can develop a solution to (1.1) for t sufficiently small through the Taylor
approximation,
1
y(t) = y(0) + y ′ (0)t + y ′′(0)t2 + .... (1.2)
2
Suppose we know the initial value for y(t), y(0). Observe, then, that we can compute y ′(0)
directly from (1.1):
y ′(0) = f (0, y(0)).
Similarly, by differentiating (1.1) with respect to t, we have

∂ ∂
y ′′ = f (t, y) + f (t, y)y ′,
∂t ∂y

and we can compute y ′′(0) as

∂ ∂
y ′′ (0) = f (0, y(0)) + f (0, y(0))y ′(0).
∂t ∂y

Proceeding similarly, we can develop the entirety of expansion (1.2).


2 Compartment Analysis
Suppose y(t) denotes the amount of substance in some compartment at time t. For example,
y(t) might denote the liters of gasoline in a particular tank or the grams of medicine in a
particular organ. We can compute the change in quantity y(t) in terms of the amount of
this quantity flowing into the compartment and the amount flowing out, as
dy
= input rate − output rate.
dt

Example 2.1. Suppose saltwater is pumped into a tank with constant rate r cm3 /s, and is
pumpted out at the same rate, and that the concentration of salt in the incoming water is
c grams/cm3 . If the volume of water in the tank is V cm3 , find an equation for the amount
of salt in the tank at time t.
Let y(t) denote the grams of salt at time t, and notice that

dy y(t) y(t)
= input rate − output rate = cr − r = r(c − ).
dt V V



2

, Example 2.2. (Drug concentration in an organ.) Suppose blood carries a certain drug into
an organ at variable rate rI (t) cm3 /s and out of the organ with variable rate rO (t) cm3 /s,
and that the organ has an initial blood volume V cm3 . If the concentration of drug in the
body is c(t) g/cm3 , determine an ODE for the amount of drug in the organ at time t.
Let y(t) denote the amount of drug in the organ at time t, measured in grams. The input
rate is then rI (t)c(t), while the output rate, assuming instantaneous mixing, is Vy(t) r (t),
(t) O
where the volume of blood in the organ V (t) can be computed as the initial volume V plus
the difference between the blood that flows into the organ over time t and the blood that
flows out during the same time:
Z t
V (t) = V + rI (s) − rO (s)ds.
0

We have, then, the ODE

dx y(t)
= c(t)rI (t) − Rt rO (t).
dt V + 0 rI (s) − rO (s)ds


Example 2.3. Suppose M grams of a certain heart medication are injected into a patient
at time 0, and that whenever the drug is present in the heart its absorption rate out of
the bloodstream (and into the heart tissue) is proportional to the amount in the heart with
proportionality constant rA s−1 . If blood flows into the patient’s heart with rate rI cm3 /s
and out with rate rO cm3 /s, and if the volume of blood in the heart at time 0 is VH and the
volume of blood in the patient’s body (minus the heart) at time 0 is VB , develop a model
for the amount of drug absorbed into the heart tissue by time t.
Let y(t) denote the amount of drug in the heart at time t, and let A(t) denote the total
amount absorbed into the heart tissue by time t. Notice that dA dt
= rA y(t) (i.e., the rate of
dA
absorption dt is proportional to the amount in the heart), and so
Z t
A(t) = rA y(s)ds.
0

Now,

dy M − y(t) − A(t) y(t)
= Rt rI (t) − Rt rO (t) − rA y.
dt VB − 0 rI (s) − rO (s)ds VH + 0 rI (s) − rO (s)ds

Coupling this with
dA
= rA y,
dt
we have a system of two equations for the quantities y(t) and A(t).
Example 2.4. (Cleaning the Great Lakes.) The Great Lakes are connected by a network
of waterways, as roughly depicted in Figure 2.1. Assume the volume of each lake remains
constant, and that water flows into the lake with volume Vk at rate rk . Suppose pollution

3

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur lekshmimj. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €7,68. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

78998 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€7,68
  • (0)
  Ajouter