Wiskunde II
1.1 Complexe getallen
Complexe getallen
complex getal: een complex getal is een getal van de vorm z = a + bi (a,b ∈ R )
Alle complexe getallen samen vormen de verzameling C
a: het reële deel van het complex getal (a = Re(z))
b: het imaginaire deel van het complex getal (b = Im(z))
- als b = 0 dan is het complex getal reëel: R ⊂ C
- als a = 0 en b ≠ 0, dan noemen we het getal zuiver imaginair
a + bi = c + di ⇔a = c en b = d
a + bi = 0 ⇔ a = 0 en b = 0
i is een vierkantswortel uit -1 ⇔ i² = -1
notaties
- a + bi met i² = -1
- (a,b)
grafische voorstelling in het vlak van Gauss
elk complex getal z = a + bi is volledig bepaald door het koppel reële getallen (a,b)
- dit koppel beschouwen we als het coördinaat van een punt P in een vlak waarin
een georthonormeerd assenstelsel is aangebracht
- beeldpunt van het complex getal z = a +bi is het punt P(a,b)
- is b = 0 dan is z = a reëel en ligt het beeldpunt van z op de x-as, de reële as
- is a = 0 en b ≠0 dan is z = bi zuiver imaginair en ligt het beeldpunt van z op
de y-as de imaginaire as
- complexe vlak, vlak van Gauss: vlak dat ontstaat tussen x-as, y-as en
evenwijdige rechten door punt P(a,b)
Rekenen met complexe getallen
Som en verschil
gegeven: z 1 , z 2 ∈ C waarbij z 1=a+ bi en z 2=c + dimet a , b , c , d ∈ R
z 1+ z2 =( a+bi)+(c +di)=( a+c)+(b+ d) i
z 1−z 2=(a+bi)−(c+ di)=(a−c )+(b−d )i
tegengestelde complexe getallen
= twee complexe getallen waarvan de som 0 is
tegengestelde getal van een complex getal z wordt met -z genoteerd
p. 1 /41
, Wiskunde II
eigenschappen C, +
inwendig en overal gedefinieerd
∀ z 1 , z 2 ∈C : z1 + z 2 ∈ C
associatief
∀ z 1 , z 2 , z 3 ∈ C :( z 1 + z 2)+ z 3=z 1 +( z 2 + z 3)
neutraal element
∃0 ∈ C , ∀ z 1 ∈C : z 1 +0=z 1=0+ z 1
symmetrisch element
∀ z 1 ∈C ,∃ !−z 1 ∈C : z1 +(−z 1)=0=(−z 1)+ z 1
commutatief
∀ z 1 , z 2 ∈C : z1 + z 2=z 2 + z 1
Product van twee complexe getallen
gegeven: z 1 , z 2 ∈ C waarbij z 1=a+ bien z 2=c + dimet a , b , c , d ∈ R
z 1∗z 2=(a+bi )∗(c +di)
¿ ac +bci+adi+bdi ²
i²=-1
¿(ac−bd )+(bc +ad )i
eigenschappen C,*
inwendig en overal gedefinieerd
∀ z 1 , z 2 ∈C : z1∗z 2 ∈C
associatief
∀ z 1 , z 2 , z 3 ∈ C :( z 1∗z 2 )∗z 3=z 1∗(z 2∗z 3)
neutraal element
∃1 ∈C , ∀ z 1 ∈ C : z 1∗1=z 1=1∗z1
opslorpend element
∃0 ∈ C , ∀ z 1 ∈C : z 1∗0=0=0∗z1
commutatief
∀ z 1 , z 2 ∈C : z1∗z 2=z 2∗z 1
distributief
∀ z 1 , z 2 , z 3 ∈ C : z 1∗(z 2 + z 3)=z 1∗z 2+ z 1∗z3
complex toegevoegd getal van een complex getal
complex toegevoegde getallen: getallen die hetzelfde reële deel maar tegengestelde
imaginaire delen hebben
bv. 5-2i is de complex toegevoegde van 5+2i
notatie: z
z = a + bi dan is z=a+bi = a - bi
eigenschappen
1. ∀ z ∈C : z=z
2. ∀ z ∈C : z+ z ∈ R
3. ∀ z ∈C : z∗z ∈ R
4. ∀ z 1 , z 2 ∈C : z1 + z 2=z 1 + z 2
5. ∀ z 1 , z 2 ∈C : z1∗z 2=z 1∗z 2
quotiënt van twee complexe getallen
→ vermenigvuldig teller en noemer met het complex toegevoegde getal van de noemer
algemeen:
p. 2 /41
, Wiskunde II
a+bi (a+ bi)∗(c−di) (ac+ bd)+( bc−ad )i ac+ bd bc−ad
= = = + i
c +di (c+ di)∗(c−di) c ²+d ² c ²+ d ² c ²+d ²
machtsverheffing in C
we definiëren machten met een natuurlijke exponent zoals in het veld R,+,*
∀ a+bi ∈C , ∀ n ∈ N 0 ¿ 1 }:¿ ¿
n-factoren
(a+bi)0=1 (a+bi≠0)
(a+bi)1= a+bi
→ omdat C,+,* een veld is, heeft de machtsverheffing in C dezelfde eigenschappen als in
R
machten van i
i1 = i
i2 = -1
i3 = i2 * i = (-1) *i = -i
i4 = i² * i² = (-1) * (-1) = 1
dus:
- i1 = i
- i² = -1
- i³ = -i
- i4 = 1
machten met i met een hogere exponent berekenen we met behulp van deze formules
door eerst in de exponent een zo groot mogelijk viervoud af te splitsen
Het vlak van Gauss
Modulus r
= afstand van het beeldpunt P van z tot de oorsprong
r =mod(z )=¿ z∨¿ √❑
Argument α
= het argument α van het complex getal z is de georiënteerde hoek die de positieve
reële as maakt met de halfrechte [OP
a
a=arg(z ); tan α =
b
- meestal kiezen we - 180° < arg (z) ≤ 180° (hoofdwaarden)
Goniometrische vorm
een complex getal z = a + bi kunnen we schrijven in de goniometrische vorm
z = r (cosα + i sin α )
Omrekeningsformule
z=r (cos α +isin α ) naar z = a +bi
a=r cos (α )
b=r sin( α )
p. 3 /41
, Wiskunde II
Product van twee complexe getallen
z 1=r 1 (cos α 1 +i sin α 1 )
z 2=r 2 (cos α 2 +i sin α 2 )
¿> z 1∗z 2=r 1∗r 2 ¿α 1+α 2 ¿ ¿
- de modulus van het product van twee complexe getallen is het product van de
moduli van de twee complexe getallen
- het argument van het product van twee complexe getallen is de som van de
argumenten van de twee complexe getallen
Machtsverheffing van complexe getallen
z=r (cos α +isin α )
¿> z n =r n (cos n α +isin n α )
- de modulus van de n-de macht (n is een natuurlijk getal) van een complex getal is
de n-de macht van de modulus van dit complex getal
- het argument van de n-de macht (n is een natuurlijk getal) van een complex getal
is het n-voud van het argument van dit complex getal
Formule van Moivre
! is r = 1?
∀ n ∈ N :¿
Quotiënt van complexe getallen
z 1=r 1 (cos α 1 +i sin α 1 )
z 2=r 2 (cos α 2 +i sin α 2 )
z1 r1
¿> = (cos (α 1−α 2)+sin(α 1−α 2 ))
z2 r2
- de modulus van het quotiënt van twee complexe getallen is het quotiënt van de
moduli van de twee complexe getallen
- het argument van het quotiënt van twee complexe getallen is het verschil van de
argumenten van de twee complexe getallen
Binomiale vergelijkingen in C
binomiale vergelijking: vergelijking in C van de vorm: zn = a met N0 en a ∈C
dus: zn - a = 0
n
z =a≤¿ z is de n−de machtswortel uit a
1.2 Matrixrekening
Matrices
matrix: met m rijen en n kolommen, een matrix met dimensie m x n of een m x n-
matrix
- elementen: reële getallen aij met i ∈ {1,2,...,m} en j ∈ {1,2,...,n}
(soorten matrices)
gelijke matrices
= twee m x n-matrices noemen we gelijk als elke twee overeenkomstige elementen
gelijk zijn
a11 = b11
p. 4 /41