MICROBIOLOGIE
MODULE 1.1 INLEIDING TOT DE MICROBIOLOGIE – CELMORFOLOGIE
HET BELANG VAN MICROBIOLOGIE
• Microbiologie behandelt 2 thema’s
→ Begrijpen van de basis van biologische processen
▪ Micro-organismen (MO’s) = excellente modelsystemen voor bestuderen van cellulaire
processen in uni- en multicellulaire organismen
→ Die kennis gebruiken voor nuttige toepassingen
▪ MO’s belangrijke rol in o.a. geneeskunde, LB en industrie
• Oudste levensvorm
• Grootste fractie biomassa op aarde
→ 2 x 1030 MO’s
• Andere levensvormen vereisen MO’s om te (over)leven
• Biogeochemische omzettingen van sleutelelementen
→ Belangrijke opslag van N en P (bv. stikstoffixatie) en S
→ Zonder MO’s nooit O2 in atmosfeer geweest (cyanobact.)
EVOLUTIE EN DIVERSITEIT VAN MICROBIELE CELLEN
• Aarde = 4,6 miljard jaar
• Eerste cellen = 3,8 – 4,3 miljard jaar geleden
→ De prokaryoten → chemotroof metabolisme: onafh. van zuurstof en licht
• Anoxische atmosfeer = tot 2,6 miljard jaar geleden
→ °cyanobact. → oxygenatie atmosfeer
• Ontstaan planten/dieren = 0,5 miljard jaar geleden
→ De eukaryoten
• Dus MO’s hebben miljarden jaren meer tijd voor evolutie/diversiteit te creëren (groei, metabolisme,
ontwikkeling…)
• Evolutionaire boom
→ 2 domeinen: prokaryoten en archaea
▪ Eukaryoten binnen archaea
MO’s IN HUN OMGEVING
• Populatie = groep organismen die voortgekomen is uit een enkele parentale cel
• Habitat = de onmiddellijke omgeving waarin een microbiële populaite leeft
• Microbiële gemeenschap = verzameling van verschillende interagerende microbiële populaties
• Ecosysteem = verzameling van alle levende organismen en de fysische en chemische componenten van een
omgeving
• MO’s hebben elk mogelijke manier uitgebuit om energie te bekomen uit hun omgeving
• Ecosystemen worden in grote mate beïnvloed (en zelf gecontroleerd) door microbiële activiteiten
• MO’s worden teruggevonden in quasi alle omgevingen op aarde (bv. extremofielen)
• 3 groepen
→ Terrestrisch
→ Aquatisch
→ Associatie met hogere organismen → microbiomen van planten/dieren/mensen… (pos/neg)
Examen: namen sleutelenzymen, substraten en
producten te kennen. Niet moleculen kunnen
tekenen. Verschillen tss pathways etc. kennen!
1
,IMPACT MO’s OP MENS
• Medisch: vroeger: infectieziekten (virus/bacterie) als belangrijkste doodsoorzaak ; nu amper!
→ Toen vooral: influenza, pneumonia, TBC, gastroenteritis…
→ Vaccinatie
→ Medicatie met anti-microbiële werking: antibiotica
→ Hygiëne
• Landbouw
→ Positief
▪ N-fixerende MO’s: symbiose met bep. planten → °wortelknolletjes: N → NH3 (ammonium)
▪ Cellulose-degraderende MO’s in herkauwers hun rumen: cellulose → suiker
▪ Regeneratie nutriënten in bodems/water
→ Negatief
▪ Ziekten bij plant/dier
▪ Bijdrage aan klimaatopwarming met CO2 en methaan uitstoot via cellulose degradatie
• Darmflora
→ 90% MO’s en 10% menselijke cellen!
→ Positief
▪ Synthese vitaminen/nutriënten
▪ Bijdrage aan voedselvertering
▪ Bescherming tegen ziektes: verbruiken nutriënten/ruimte, anders ingenomen door
pathogenen (competitie)
→ Bv. Helicobacter pylori
• Voeding
→ Positief: microbiële transformaties (bv. fermentaties) → producten met gewenste eig.
→ Negatief: voedselbederf
• Energie/milieu
→ Biobrandstoffen en -chemicaliën (bio-economie) (bv. bioplastic, bio-ethanol → best vertrekkend uit
LB afval, momenteel nog uit maïs (cellulose/cornstarch → glucose → fermentatie → ethanol))
→ Degradatie van vervuilende stoffen (bioremediatie) (bv. zware metalen uit bodem zuiveren)
ONTDEKKING MO’s → microscooop als belangrijkste techniek!
• Robert Hooke (1635 – 1703)
→ Beschreef als eerste MO’s
• Antoni van Leeuwenhoek (1632 – 1723)
→ Beschreef als eerste bacteriën
→ van Leeuwenhoek microscoop (foto RBC’s)
• Ferdinand Cohn (1828 – 1898)
→ Basis voor bacteriële klassificatie + bacteriële endosporen ontdekt
LOUIS PASTEUR (1822 – 1895)
• Ontdekte dat alcoholfermentatie een biologisch proces is → verband met gisten
→ Vroeger: “chemisch proces”
• Weerlegde theorie van spontane generatie: foto
→ “MO ontstaat uit het niets”
→ Zwanenhals: contact met buitenlucht
bemoeilijken
→ Rechtstaan fles: geen MO contaminatie
→ Kanteling fles: wél MO contaminatie
→ Er is dus altijd contact met buitenomgeving
nodig; niet spontaan ergens
2
,ROBERT KOCH (1843 – 1910)
• Ontwikkelde technieken voor bekomen van zuivere microbiële culturen: groei op vaste voedingsbodem
→ Aardappelschijfjes als voedingsbron om kolonies op te groeien
• Demonstreerde verband tussen MO’s en infectieziekten: 4 postulaten van Koch: bewijzen dat een pathogeen
de verwekker is
→ Stap 1: gezonde en zieke (symptomen)
dieren bestuderen dmv bloedstalen
microscopie
▪ Cellen komen voor bij zieke dieren,
niet bij gezonde
→ Stap 2: vermoedelijke pathogeen uitplaten
op vaste voedingsbodem → kolonies laten
groeien
▪ Cellen in vloeibare cultuur verder
opkweken
→ Stap 3: inoculatie cellen in gezond dier →
moeten ziekte veroorzaken
→ Stap 4: cellen opnieuw opgroeien op vaste
voedingsbodem en moeten dan dezelfde zijn uit stap 2
ONTDEKKING MICROBIELE DIVERSITEIT
• Na medische focus → ecologische focus via omgevingsstalen
• Martinus Beijerinck (1851 – 1931)
→ Ontwikkelde verrijkings-cultivatietechniek
• Sergei Winogradsky (1856 – 1953)
→ Demonstreerde verband tussen specifieke bacteriën en specifieke biogeochemische omzettingen
→ Stelde concept “chemolithotrofie” voor
▪ Anorganische verbindingen als E-bron
STUDIE CELSTRUCTUUR: LICHTMICROSCOPIE
• Zichtbaar licht om cellen te belichten
• Types lichtmicroscopie
→ Bright field
→ Fase-contrast
→ Dark-field
→ Fluorescentie
→ Differentiële interferentie contrast (DIC)
• Magnificatie: object vergroten → beperkt door resolutie
• Resolutie: mogelijkheid om 2 naast elkaar liggende objecten te onderscheiden
→ Limiet: 0,2 µm voor lichtmicroscopie
CONTRAST IN LICHTMICROSCOPIE
• Verbeteren contrast = beter beeld
• Kleuren = beter contrast
→ Meeste bact. prokaryoten geen pigmenten dus niet bruikbaar
wegens te weinig contrast met achtergrond
▪ Planten: chloroplasten: groen
→ Oplossing: kleurstoffen die binden aan celcomponenten (bv.
celwand)
▪ Vb.: methyleenblauw, safarine, kristalviolet…
→ Nadeel: cellen moeten dood hierdoor: fixatie op glasplaatje
▪ Geen studie van gedrag
▪ Andere technieken ontwikkelt in ruil, zonder kleuring
3
, • Differentiële kleuring
→ Bacteriën indelen in groepen: identificatie
→ Gram staining: indeling gram positieve en gram negatieve bacteriën
▪ Kristal-violet interageert met peptidoglycaan in celwand →
paarse kleur: zowel + als –
▪ Kleuring fixeren dmv iodine
▪ Ontkleuring met alcohol (kort): Gram+ blijven paars en Gram-
ontkleuren
▪ Gram- roos kleuren via safranine
• Intermezzo: modelorganismen
→ Gram+: Stafillococcus aureus
→ Gram-: E.coli
→ Eigenschappen die in bij (bijna) alle organismen in die groep voorkomen
→ Makkelijk op te kweken
→ Groeien snel
→ Veel over geweten: moleculair, genetica, biochemie, biologische kennis…
TYPES LICHTMICROSCOPIE
Volgens steeds hogere kostprijs
• Brightfield microscopie
→ Goedkoopste
• Fase-contrast microscopie
→ Een fase-ring amplificeert verschillen tussen de brekingsindex van de cellen en omgeving
• Dark-field microscopie
→ Licht bereikt specimen vanaf zijkanten
→ Alles donker in achtergrond
a) bright field / b) fase-contrast / c) dark-field
• Fluorescentiemicroscopie
→ Cellen kleuren van nature (autofluorescentie), of nadat ze gekleurd werden met fluorescente
kleurstof (bv. DAPI) of na het uitdrukken van een fluorescente reporter (bv. GFP)
▪ Bv. archaea met variant van GFP (groen)
→ Licht van golflengte wordt opgenomen + emissie andere golflengte die je dan waarneemt
a) cyanobact met FS pigmenten / b) idem (TEM) / c) E.coli met DAPI
• Differentiële interferenctie contrast (DIC) microscopie
→ Duurste
→ 3D beeld
→ polarizer onder staalplatform: 2 afzonderlijke stralen in verschillende fasen (gepolariseerd) maken →
verschil in fase door verschil in brekingsindex
→ Geeft intracellulaire structuren zoals endosporen, vacuolen en granules een 3D structuur
4
, ▪ Bv. in gist: nucleus, vacuolen…
ELEKTRONENMICROSCOPIE
• Elektronen ipv fotonen om cellen/structuren in beeld te brengen
• Types
→ Transmissie-elektronenmicroscopie (TEM)
▪ Oppervlaktestructuren visualiseren, maar om in de cel te kijken doorsnedes nodig want e-
gaan minder makkelijker door specimen
→ Scanning elektronenmicroscopie (SEM)
▪ Specimen bedekt met zware metalen, bv. goud: terugkaatsing e-
• Resolutie: 0,2 nm
→ Celstructuren/eiwitten!
• Duur!
links: TEM / rechts: SEM
VRAAGJES
- Welke microscoop om oppervlaktemorfologie te bestuderen?
→ SEM
- Voor bepalen van gram type bacteriepopulatie?
→ Bright field
- Bestuderen van een staal actieve motiele (zonder pigmenten) MO?
→ Fase-contrast, beter dan bright field
→ Niet fluorescentie want geen pigmenten. DIC geschikt maar duurder.
- Voor MO die aan FS doet?
→ Fluorescentie (FS pigment) maar ook bright field mogelijk
CELMORFOLOGIE
• Morfologie = slechte predictor van fysiologie/evolutie!
→ Geen verband tussen fylogenetische groepen en morfologische
verschijningsvormen
• Selectieve krachten betrokken in bepalen van morfologie
• Bv. aquatisch: vibrio of spiraalvorming = makkelijker voortbewegen
• Vormen
→ Filamenteus, coccus, vibrio, spiraal, bacillus, staaf, archeon, postzegelvorm,
uitsteeksels…
→ Pleiomorf = vorm kunnen aanpassen doorheen levenscyclus of door
omstandigheden
5
,CELGROOTTE
• Range celdiameter prokaryoten: 0,2 µm > 700 µm
→ Grootste bacterie: blote oog te zien: 1 mm
→ Vb’en uitzonderlijk grote cellen
▪ Epulopiscium fishelsoni (in darm vis)
▪ Thiomargarita namibiensis (S-oxiderende, vrijlevende bact)
→ Meesten tussen 0,4 – 4,0 µm breed en <15 µm lang
• Range celdiameter eukaryoten: 10 µm > 200 µm
Waarom uitzonderlijk grote cellen? → T. namibiensis
• Zwavelverbindingen
• MO zit in omstandigheden die kunnen veranderen
→ Bij veel waterstofsulfide: veel omzetting naar elementair S = vaste stof
opgeslagen in zwavelglobules = energieopslag
→ Bij te weinig: globule geoxideerd
→ Dus deze bact: zéér veel globules = evolutionair voordeel
Waarom toch altijd zo klein gebleven? → oppervlakte-volume verhouding
• Opp gedeeld door volume
• T. namibiensis: 0,008 µm-2
→ Uitzonderlijk grote bact.
• M. pneumoniae: 30 µm-2
→ 1 vd kleinste bact die er bestaan
→ Veel voordeliger
→ Kleine cellen = groter oppervlakte-volume ratio
▪ Meer nutriëntenuitwisseling per eenheid celvolume
▪ Vaak hogere groeisnelheid
▪ Sneller kunnen evolueren
MODULE 1.2 CELMEMBRANEN EN CELWANDEN – OPPERVLAKTESTRUCTUREN EN -INCLUSIES – MICROBIELE
MOTILITEIT
MICROBIELE STRUCTUUR
• Eukarya binnen archaea → toch zijn archaea nog steeds meer verwant aan bacteriën
• Typische prokaryote celstructuur
→ Geen celorganellen
→ In cytoplasma: mengsel van genomisch DNA (nucleoide) en andere cellulaire componenten (eiwitten,
ribosomen, plasmiden…)
• Typische eukaryote celstructuur
→ Complex
→ Nucleus
→ Celorganellen
6
, MEMBRAANSTRUCTUUR
• Ontstaan membraanlipiden → °celwand
• Cytoplasmatisch membraan
→ Dunnen structuur die cel omgeeft
→ Scheidt cytoplasma van omgeving af
→ Zeer selectieve permeabele barrière
BACTERIELE MEMBRAANSTRUCTUUR
• Verschillen in opbouw: vs. eukarya en vs. archaea
→ Grote gelijkenis met eukarya!
• Cytoplasmatisch membraan
• Bilaag: dubbele membraanlipidenlaag
• Binnen: hydrofoob = vetzuren = alifatische koolwaterstofketens
→ (on)verzadigd
→ Weinig stoffen kunnen doorheen wand → actief transport
nutriënten naar binnen / afvalstoffen buiten
• Buiten: hydrofiel = glycerol met fosfaatgrobep
• Esterverbinding = verbinding vetzuren + glycerol
→ Typisch bacteriële/eukaryote celmembranen → NIET bij archaea
• Verankerde eiwitten
→ Integraal = kanaal
→ Perifeer = gedeeltelijk vastgehecht
(binnen/buiten)
▪ Gram- veel perifere EW langs
buitenkant
→ < hydrofobe AZ’s
→ FS, oxidatieve fosforylatie…
• Mg en Ca2+ stabiliseren membraan: °ionische
2+
verbindingen met negatieve ladingen van fosfolipiden
• Vloeibaar → niet té = cel lyse
→ Versterkt door sterol-achtige moleculen (hopanoiden) (<-> euk: sterolen (cholesterol))
▪ Aromatische koolwaterstof verbindingen
▪ Tussen vetzuurketens
• + 8 nm dik
ARCHAEALE MEMBRAANSTRUCTUUR
gelijkenis (G) – verschil (V)
• Hydrofiel & hydrofoob deel
• Monolaag
• Fytanyl (<-> vetzuur (bact.))
→ < Isoprenen = telkens 5 C’s
• Glycerol: alifatische koolwaterstofketens zitten op andere C’s van glycerol vast
→ Andere stereochemie dan bact → al vroeg in evolutie diversificatie archaea en bact.
• Etherverbinding tussen fytanyl en glycerol
• Soms methylgroep tussen
• Soms langs beide kanten fosfaatgroep
→ Nooit bij bact; monolaag vs bilaag
• Soms cyclische structuren (C5 of C6)
• Monolaag + cyclisch = stevigere celwand voor thermofielen (hoe hoger T, hoe vloeibaarder)
7