Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
[BSc TN] Summary Transport Phenomena - 2nd Midterm €3,49   Ajouter au panier

Resume

[BSc TN] Summary Transport Phenomena - 2nd Midterm

 29 vues  2 fois vendu
  • Cours
  • Établissement
  • Book

--- Satisfied? Please don't forget to leave a rating! --- This summary covers chapters 4 and 5 of "Transport Phenomena - The Art of Balancing" by H. v.d. Akker and R.F. Mudde (besides the less crucial §4.4 and §5.5) and the lectures given of the accompanying course "TN2786 - Fysische Transport...

[Montrer plus]

Aperçu 3 sur 18  pages

  • Inconnu
  • 20 mai 2023
  • 18
  • 2021/2022
  • Resume
avatar-seller
4 Mass transport
4.1 Analogy between mass transport and heat transport
There exist analogies between mass and heat transport.
For the convective transport of both heat ϕq [J s−1 ] and mass ϕm [kg s−1 ]:
ϕq = ϕv · ρcp T, (4.1)
ϕm = ϕv · c. (4.2)
For the convective fluxes of both heat ϕ′′q [J m−2 s−1 ] and mass ϕ′′m [kg m−2 s−1 ]:
ϕ′′q = v · ρcp T, (L14)
ϕ′′m = v · c. (L14)
For the diffusion coefficients of both heat and mass: a [m2 s−1 ], D [m2 s−1 ].
For the diffusive fluxes of both heat ϕ′′q [J m−2 s−1 ] and mass ϕ′′m [kg m−2 s−1 ]:
dT d(ρcp T )
ϕ′′q = −λ = −a (Fourier’s law), (4.3)
dx dx
dc
ϕ′′m = −D (Fick’s law). (4.4)
dx
Fick’s law only applies to binary (so only two substances) systems, and gives a poor
description for polar molecules. The analogy with heat transport therefore does not
hold under every condition.

4.2 Mutual diffusion based on the analogy with heat trans-
port
Mass flow and a driving force can be linked similarly to Newton’s law of cooling.
For a substance A,
ϕm,A = kA∆cA , (4.30)
where k [m s−1 ] is the mass transfer coefficient.
This equation is entirely analogous with heat transport, where 1/k can now be
interpreted as the resistance to mass transport.
Between two flat plates a distance D apart:
D
k= ;
D
for annular space between two cylinders of radii D1 and D2 :
2D
k= ;
D2 ln(D2 /D1 )
and for a sphere in an infinite medium of radius D:
2D
k= .
D

23

,In non-dimensional form, the ratio of the convective mass transport and the diffusive
mass transport is known as the Sherwood number (Sh):

kD
Sh = , (4.31)
D

which is analogous to the Nusselt number (Nu).

Similarly for the Prandtl number (Pr), we have the analoglous Schmidt number (Sc):

ν
Sc = . (L14)
D


For mass, we can also analogously to heat work with penetration theory. The
penetration depth is now defined as

δ(t) = πDt, (L14)

which again is only valid for a layer/slab of thickness D if δ(t) < 0.6D. With help
of the Fourier number:

Dt
Fo = < 0.1. (4.35)
D2

And, for double-heated layers/slabs or cylindrical/spherical bodies:

Fo < 0.03.

It is then also clear that
r
D D D
ϕ′′m = k∆c = ∆c = √ ∆c = ∆c, (L14)
D πDt πt

which implies that k is dependent on time:
r
D
k(t) = . (4.36)
πt
With the penetration depth δ(t) only having a significantly changed concentration,
it follows that the overall concentration difference is independent on time:

∆c = c1 − c0 ̸= f (t).




24

, Similarly, we speak of long-term diffusion into a layer of a stagnant medium or a
solid material if: Fo > 0.1 for diffusion processes from/towards a single boundary
plane; and if Fo > 0.03 for diffusion processes concerning double-sided diffusion
from/towards a slab or a cylindrical/spherical body.

We again work with a mean concentration ⟨c⟩, which yields

D
ϕ′′m = k(c1 − ⟨c⟩) = Sh (c1 − ⟨c⟩),
D
where k is now independent on time and therefore is constant:

D
k = Sh ̸= f (t). (L14)
D

So for long periods of time, we again find

For a flat slab: Sh = 4.93;
For a long cylinder: Sh = 5.8;
For a sphere: Sh = 6.6.

The concentration difference after long times, so Fo > 0, 03, is then also dependent
on time:

∆c = T1 − ⟨T ⟩ = f (t).



Again, the driving force for diffusion can also be described by the concentration at
the centre of a body cc by

ϕ′′m = k(c1 − cc ).



The exact solutions for the total diffusion process for a number of finite-size objects
are shown in TPDC ”Fourier Instationary Heat and Mass Transfer” (p. 90-92) for
the ratios
c1 − cc c1 − ⟨c⟩
and .
c1 − c0 c1 − c0
Note that for smaller values of Fo (e.g. Fo < 0.03), these graphs lead to inaccurate
results and it is therefore better to use penetration theory.




25

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur rhjatol. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €3,49. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

79271 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€3,49  2x  vendu
  • (0)
  Ajouter