Physical Chemistry - Spectroscopy - Probing Molecules with Light_lecture34
0 vue 0 fois vendu
Cours
MIT Courses
Établissement
MIT Courses
This course presents an introduction to quantum mechanics. It begins with an examination of the historical development of quantum theory, properties of particles and waves, wave mechanics and applications to simple systems — the particle in a box, the harmonic oscillator, the rigid rotor and the ...
SPECTROSCOPY: PROBING MOLECULES WITH LIGHT
In practice, even for systems that are very complex and poorly
characterized, we would like to be able to probe molecules and find out as
much about the system as we can so that we can understand reactivity,
structure, bonding, etc. One of the most powerful tools for interrogating
molecules is spectroscopy. Here, we tickle the system with electromagnetic
radiation (i.e. light) and see how the molecules respond. The motivation for
this is that different molecules respond to light in different ways. Thus, if
we are creative in the ways that we probe the system with light, we can hope
to find a unique spectral fingerprint that will differentiate one molecule
from all other possibilities. Thus, in order to understand how spectroscopy
works, we need to answer the question: how do electromagnetic waves
interact with matter?
The Dipole Approximation
An electromagnetic wave of wavelength λ, produces an electric field, E(r,t),
and a magnetic field, B(r,t), of the form:
E(r,t)=E0 cos(k·r – ωt) B(r,t)=B0 cos(k·r – ωt)
Where ω=2πν is the angular frequency of the wave, the wavevector k has a
magnitude 2π/λ and k (the direction the wave propagates) is perpendicular to
E0 and B0. Further, the electric and magnetic fields are related:
E0· B0=0 |E0|=c|B0|
Thus, the electric and magnetic
http://www.monos.leidenuniv.nl
fields are orthogonal and the
magnetic field is a factor of c (the
speed of light, which is 1/137 in
atomic units) smaller than the
electric field. Thus we obtain a
picture like the one at right, where
the electric and magnetic fields
oscillate transverse to the
direction of propagation.
Now, in chemistry we typically deal with the part of the spectrum from
ultraviolet (λ≈100 nm) to radio waves (λ≈10 m)1. Meanwhile, a typical molecule
1
There are a few examples of spectroscopic measurements in the XRay region. In these
cases, the wavelength can be very small and the dipole approximation is not valid.
, 5.61 Physical Chemistry Lecture #34 2
is about 1 nm in size. Let us assume that the molecule is sitting at the origin.
Then, in the 1 nm3 volume occupied by the molecule we have:
k·r ≈ |k| |r| ≈ 2p/(100 nm) 1 nm = .06
Where we have assumed UV radiation (longer wavelengths would lead to even
smaller values for k·r). Thus, k·r is a small number and we can expand the
electric and magnetic fields in a power series in k·r:
E(r,t)≈E0 [cos(k·0-ωt)+O(k·r)]≈E0 cos(ωt)
B(r,t)≈B0 [cos(k·0-ωt)+O(k·r)]≈B0 cos(ωt)
Where we are neglecting terms of order at most a few percent. Thus, in
most chemical situations, we can think of light as applying two time
dependent fields: an oscillating, uniform electric field (top) and a
uniform, oscillating magnetic field (bottom). This approximation is called
the Dipole approximation – specifically when applied to the electric
(magnetic) field it is called the electric (magnetic) dipole approximation. If
we were to retain the next term in the expansion, we would have what is
called the quadrupole approximation. The only time it is advisable to go to
higher orders in the expansion is if the dipole contribution is exactly zero as
happens, for example, due to symmetry in some cases. In this situation, even
though the quadrupole contributions may be small, they are certainly large
compared to zero and would need to be computed.
The Interaction Hamiltonian
How do these oscillating electric and magnetic fields couple to the molecule?
Well, for a system interacting with a uniform electric field E(t) the
interaction energy is
Hˆ E ( t ) = −µˆ iE ( t ) = −e rˆ i E ( t )
where µ is the electric dipole moment of the system. Thus, uniform electric
fields interact with molecular dipole moments.
Similarly, the magnetic field couples to the magnetic dipole moment, m.
Magnetic moments arise from circulating currents and are therefore
proportional to angular momentum – larger angular momentum means higher
circulating currents and larger magnetic moments. If we assume that all the
angular momentum in our system comes from the intrinsic spin angular
momentum, I=(Ix , Iy ,Iz), then the magnetic moment is strictly proportional to
I. For example, for a particle with charge q and mass m then
q gˆ
Hˆ B ( t ) = −m
ˆ iB ( t ) = − Ii B ( t )
2m
Les avantages d'acheter des résumés chez Stuvia:
Qualité garantie par les avis des clients
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur tandhiwahyono. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €2,43. Vous n'êtes lié à rien après votre achat.