the Notes contain all the solutions given in the book Microelectronic Circuits by Sedra and Smith has served generations of electrical and computer enginee ring students as the best and most widely-used text for this required course. Respected equally as a textbook and reference, "Sedra/Smith" comb...
solution manual microelectronic circuits 8th edition adel s sedra
solution manual microelectronic circuits 8th edition smith
solution manual microelectronic circuits 8th edition sedra and smith
mi
Livre connecté
Titre de l’ouvrage:
Auteur(s):
Édition:
ISBN:
Édition:
École, étude et sujet
Solution Manual Microelectronic Circuits 8e Sidra
Solution Manual Microelectronic Circuits 8e Sidra
1
vérifier
Par: aisosaokunbor • 9 mois de cela
Vendeur
S'abonner
anilkumarsimba
Avis reçus
Aperçu du contenu
EIGHTH INTERNATIONAL EDITION
Instructor’s solution manual for
Microelectronic
Circuits
Adel S. Sedra
University of Waterloo
Kenneth C. Smith
University of Toronto
Tonny Chan Carusone
University of Toronto
Vincent Gaudet
University of Waterloo
New York Oxford
OXFORD UNIVERSITY PRESS
Sedra_FM_BM.indd 3 9/30/2014 9:36:34 PM
, Exercise 1–1
Chapter 1 Rs
Solutions to Exercises within the Chapter
vs (t)
vo RL
Ex: 1.1 When output terminals are
open-circuited, as in Fig. 1.1a:
For circuit a. v oc = v s (t)
Given v s (t) = 10 mV and Rs = 1 k.
For circuit b. v oc = is (t) × Rs
If RL = 100 k
When output terminals are short-circuited, as in
100
Fig. 1.1b: v o = 10 mV × = 9.9 mV
100 + 1
v s (t)
For circuit a. isc = If RL = 10 k
Rs
10
For circuit b. isc = is (t) v o = 10 mV × 9.1 mV
10 + 1
For equivalency If RL = 1 k
Rs is (t) = v s (t) 1
v o = 10 mV × = 5 mV
1+1
Rs a If RL = 100
100
v o = 10 mV × 0.91 mV
vs (t) 100 + 1 K
For v o = 0.8v s ,
RL
= 0.8
b RL + Rs
Figure 1.1a Since Rs = 1 k,
RL = 4 k
a
Ex: 1.4 Using current divider:
is (t) Rs io
is 10 A Rs RL
b
Figure 1.1b
Rs
io = i s ×
Rs + RL
Ex: 1.2
Given is = 10 µA, Rs = 100 k.
For
Rs isc 100
RL = 1 k, io = 10 µA × = 9.9 µA
voc vs 100 + 1
For
100
RL = 10 k, io = 10 µA × 9.1 µA
100 + 10
For
v oc = 10 mV 100
RL = 100 k, io = 10 µA × = 5 µA
100 + 100
isc = 10 µA
100 K
v oc 10 mV For RL = 1 M, io = 10 µA ×
Rs = = = 1 k 100 K + 1 M
isc 10 µA
0.9 µA
Ex: 1.3 Using voltage divider: 100
For io = 0.8is , = 0.8
100 + RL
RL
v o (t) = v s (t) × ⇒ RL = 25 k
Rs + RL
1 1 Ex: 1.9 (a) D can represent 15 equally-spaced
Ex: 1.5 f = = −3 = 1000 Hz
T 10 values between 0 and 3.75 V. Thus, the values are
ω = 2π f = 2π × 103 rad/s spaced 0.25 V apart.
1 1 v A = 0 V ⇒ D = 0000
Ex: 1.6 (a) T = = s = 16.7 ms
f 60 v A = 0.25 V ⇒ D = 0000
1 1 v A = 1 V ⇒ D = 0000
(b) T = = −3 = 1000 s
f 10
v A = 3.75 V ⇒ D = 0000
1 1
(c) T = = 6 s = 1 µs (b) (i) 1 level spacing: 20 × +0.25 = +0.25 V
f 10
(ii) 2 level spacings: 21 × +0.25 = +0.5 V
Ex: 1.7 If 6 MHz is allocated for each channel,
then 470 MHz to 608 MHz will accommodate (iii) 4 level spacings: 22 × +0.25 = +1.0 V
806 − 470 (iv) 8 level spacings: 23 × +0.25 = +2.0 V
= 23 channels
6
(c) The closest discrete value represented by D is
Since the broadcast band starts with channel 14, it
+1.25 V; thus D = 0101. The error is -0.05 V, or
will go from channel 14 to channel 36.
−0.05/1.3 × 100 = −4%.
T
1 v2 Ex: 1.10 Voltage gain = 20 log 100 = 40 dB
Ex: 1.8 P = dt
T R Current gain = 20 log 1000 = 60 dB
0
Power gain = 10 log Ap = 10 log (Av Ai )
1 V2 V2
= × ×T =
T R R = 10 log 105 = 50 dB
Alternatively,
P = P1 + P3 + P5 + · · · Ex: 1.11 Pdc = 15 × 8 = 120 mW
√
2 (6/ 2)2
4V 2 1 4V 1 PL = = 18 mW
= √ + √ 1
2π R 3 2π R
2 Pdissipated = 120 − 18 = 102 mW
4V 1
+ √ + ··· PL 18
5 2π R η= × 100 = × 100 = 15%
Pdc 120
V2 8 1 1 1
= × 2 × 1+ + + + ··· Ex: 1.12 v o = 1 × 6
10
10−5 V = 10 µV
R π 9 25 49
10 + 10
It can be shown by direct calculation that the (10 × 10−6 )2
infinite series in the parentheses has a sum that PL = v 2o /RL = = 10−11 W
10
approaches π 2 /8; thus P becomes V 2/R as found
from direct calculation. With the buffer amplifier:
Ri RL
Fraction of energy in fundamental vo = 1 × × Av o ×
Ri + Rs RL + Ro
= 8/π 2 = 0.81 1 10
=1× ×1× = 0.25 V
Fraction of energy in first five harmonics 1+1 10 + 10
v 2o 0.252
8 1 1 PL = = = 6.25 mW
= 2 1+ + = 0.93 RL 10
π 9 25
Fraction of energy in first seven harmonics vo 0.25 V
Voltage gain = = = 0.25 V/V
vs 1V
8 1 1 1
= 2 1+ + + = 0.95 = −12 dB
π 9 25 49
PL
Fraction of energy in first nine harmonics Power gain (Ap ) ≡
Pi
8 1 1 1 1
= 2 1+ + + + = 0.96 where PL = 6.25 mW and Pi = v i i1 ,
π 9 25 49 81
v i = 0.5 V and
Note that 90% of the energy of the square wave is
in the first three harmonics, that is, in the 1V
ii = = 0.5 µA
fundamental and the third harmonic. 1 M + 1 M
Thus, Ex: 1.16 Refer the solution to Example 1.3 in the
text.
Pi = 0.5 × 0.5 = 0.25 µW
v i1
and = 0.909 V/V
vs
6.25 × 10−3
Ap = = 25 × 103 v i1 = 0.909 v s = 0.909 × 1 = 0.909 mV
0.25 × 10−6
10 log Ap = 44 dB v i2 v i2 v i1
= × = 9.9 × 0.909 = 9 V/V
vs v i1 vs
Ex: 1.13 Open-circuit (no load) output voltage = v i2 = 9 × v S = 9 × 1 = 9 mV
Av o v i
v i3 v i3 v i2 v i1
Output voltage with load connected = × × = 90.9 × 9.9 × 0.909
vs v i2 v i1 vs
RL
= Av o v i = 818 V/V
RL + Ro
1 v i3 = 818 v s = 818 × 1 = 818 mV
0.8 = ⇒ Ro = 0.25 k = 250
Ro + 1
vL vL v i3 v i2 v i1
= × × ×
vs v i3 v i2 v i1 vs
Ex: 1.14 Av o = 40 dB = 100 V/V
2 = 0.909 × 90.9 × 9.9 × 0.909 744 V/V
v2 RL
P L = o = Av o v i RL
RL RL + Ro v L = 744 × 1 mV = 744 mV
2
1
= v i × 100 ×
2
1000 = 2.5 v 2i Ex: 1.17 Using voltage amplifier model, the
1+1
three-stage amplifier can be represented as
v 2i v 2i
Pi = =
Ri 10,000
Ro
PL 2.5v 2
Ap ≡ = −4 i 2 = 2.5 × 104 W/W
Pi 10 v i
10 log Ap = 44 dB vi Ri Avovi
Ex: 1.15 Without stage 3 (see figure)
vL
= Ri = 1 M
v s
1 M 100 k Ro = 10
(10)
100 k + 1 M 100 k + 1 k
Av o = Av 1 ×Av 2 ×Av 3 = 9.9×90.9×1 = 900 V/V
100
×(100) The overall voltage gain
100 + 1 k
vo Ri RL
vL = × Av o ×
= (0.909)(10)(0.9901)(100)(0.0909) vs Ri + Rs RL + Ro
vs
= 81.8 V/V
This figure belongs to Exercise 1.15.
Stage 1 Stage 2
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur anilkumarsimba. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €6,34. Vous n'êtes lié à rien après votre achat.