Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting van het boek hele getallen voor de toets getallen en bewerkingen €4,69   Ajouter au panier

Resume

Samenvatting van het boek hele getallen voor de toets getallen en bewerkingen

 17 vues  2 fois vendu
  • Cours
  • Établissement
  • Book

Dit is een samenvatting van het boek hele getallen. Dit boek wordt getoetst bij de toets getallen en bewerkingen op de pabo. Ik heb rekening gehouden met details en voorbeelden gebruikt om definities te verduidelijken.

Aperçu 4 sur 32  pages

  • Non
  • Hoofdstuk 1, 2, 3, 4, 5 en blz 225/226 van hoofdstuk 8
  • 14 novembre 2022
  • 32
  • 2022/2023
  • Resume
avatar-seller
Sara Huveneers


Getallen en bewerkingen samenvatting
Boek hele getallen
Hoofdstuk 1
1.1
Betekenis van getallen: getallen helpen je om de wereld te ordenen, te
structureren en te organiseren. Getallen komen in het dagelijks leven in
veel verschillende situaties en betekenissen voor.

Telgetal of ordinaalgetal = de rangorde aan in een telrij (1, 2, 3, 4, 5),
maar ook een nummer; de eerste, de tweede, nummer 3 etc.

Hoeveelheidsgetal of kardinaalgetal = geeft een bepaalde
hoeveelheid aan (tellen, bijvoorbeeld 6 pakken melk)

Naamgetal = heeft het getal vooral voor een naam (bus 3)

Meetgetal = geeft een maat aan (Luuk is 4 jaar, van de voordeur tot het
tuinhek is 4 meter, je kan het narekenen)

Formeel getal = kaal rekengetal (5x6)

Natuurlijk getal = de getallen waarmee we tellen (5)
- negatieve getallen (-15), vindt vooral in de onderbouw van het
voortgezet onderwijs plaats.

Hele getallen = bestaat uit alle natuurlijke getallen en de negatieve hele
getallen

Hoe kan je het uitrekenen of een BSN geldig is:
1. Plaats een 0 voor de 8 cijfers zodat je er 9 in totaal krijgt
2. Vermenigvuldig het 1ste cijfer met de 9, de 2e met de 8, de 3e met de 7
etc.
3. Ga zo verder totdat je het 8ste cijfer met de 2 vermenigvuldigd hebt
4. Tel de 8 uitkomsten bij elkaar op
5. Deel de uitkomst door 11
6. De rest die de deling oplevert moet het laatste getal zijn van je BSN,
dan is je BSN geldig, anders NIET.

1.2
Talstelsel, getallenstelsel of getal systeem = het systeem om
getallen in een rij cijfers weer te geven.

Eigenschappen van het getal systeem:
- Bestaat uit een decimale structuur
- decimaal betekent tientallig (0, 1, 2, 3, 4, 5, 6, 7, 8 en 9)
- de plaats of positie van een cijfer bepaalt de waarde van een cijfer in het
getal 398 is de 3=300 waard, maar in het getal 938 is de 3=30 waard
- deze manier van hoeveelheden noteren is kenmerkend voor een

,Sara Huveneers

positioneel getal systeem.
- in het getal systeem neemt het cijfer 0 een belangrijke plaats in. De 0
zorgt voor de correcte positie van het cijfer 7 in het getal 7000
bijvoorbeeld. Met een 0 minder zou er 700 staan etc.

Romeinse cijfers + waardes
I=1
V=5
X = 10
L = 50
C = 100
D = 500
M = 1000

additief systeem in het romeinse getallenstelsel = de waarde van
het voorgestelde getal, wordt bepaald door het totaal aantal symbolen.
- het getal 7 wordt weergegeven als VII. De waarde is te bepalen door de
verschillende symbolen bij elkaar op te tellen (5+1+1=7),

substractief principe in het romeinse getallenstelsel = als een
symbool met een kleinere waarde voor een symbool met een hogere
waarde staat, zoals IX, wordt de waarde van het eerste symbool
afgetrokken van de waarde van het tweede symbool.

14 oud-romeins = XIIII
14 nieuw-romeins = XIV

Andere talstelsels:
- Binaire (2-tallig talstelsel) en hexadecimale (16-tallig talstelsel)
- Sexagesimale (60- tallig) of babylonische getalsysteem (tijd en
hoekmeting)
- Octale stelsel (8-tallig)
- Metriek stelsel (km-hm-dam-m-dm-cm-mm) alles wordt in stappen van
10 groter of kleiner.

1.3
Deelbaarheid
- een getal is deelbaar door een ander getal als de rest bij de deling gelijk
is aan 0.
- getallen zijn deelbaar door 10 = als het getal eindigt op een 0
- getallen zijn deelbaar door 5 = als het getal eindigt op een 0 of 5
- getallen zijn deelbaar door 2 en 4 (even) = als het getal eindigt op
een even getal
- getallen zijn deelbaar door 8 = als de laatste 3 cijfers deelbaar zijn
door 8
- getallen zijn deelbaar door 3 = de som van de cijfers moet deelbaar
zijn door 3

- getallen zijn deelbaar door 6 = het getal moet even zijn en de som
van de cijfers moet deelbaar zijn door 3.

,Sara Huveneers

- getallen zijn deelbaar door 9 = de som van het getal moet deelbaar
zijn door 9.

Priemgetallen (strookgetal):
- getallen die alleen zichzelf en 1 als deler hebben (2, 3, 5, 7, 11, 13, 17,
19)
- als je het zo tekenen kan het alleen in een lange strook waarvan de zijde
gelijk is aan 1 hokje.

Ontbinden in factoren = het zoeken naar getallen die met elkaar
vermenigvuldigd weer het oorspronkelijke getal opleveren
- je rekent uit door welke priemgetallen je het getal kan delen
- getal 85 ontbinden in priemfactoren, namelijk (5 x 17)

GGD (grootste gemene deler)
- gaat om het grootste getal dat deler is van 2 of meer hele getallen
- 24 = 2 x 2 x 2 x 3
- 92 = 2 x 2 x 23
De gelijke priemfactoren zijn 2 x 2. De grootste gemene deler vind je door
dit keer elkaar te doen. Dus GGD = 4.

KGV (kleinste gemene veelvoud)
- gaat om het kleinste getal dat veelvoud is van twee of meer getallen
- 26 = 2 x 13
- 14 = 2 x 7
- Welk getal komt er in beide noemers voor wat het kleinst is
- KGV van 6 en 15 = 30, want 30 kan je delen door 6 en 15.

Volmaakte getallen = een positief getal dat gelijk is aan de som van zijn
delers, behalve zichzelf.
- 6 is een volmaakt getal, als je de delers bij elkaar optelt 1 + 2 + 3 = 6.
- de enige 2 volmaakte getallen onder de 100 zijn 6 en 28. Het volgende
volmaakte getal is 496.

Figurale getallen = getallen die je in een stippenpatroon kunt leggen,
zoals een driehoek, vierkant, piramide of kubus.
- driehoeksgetallen, rechthoeksgetallen (de hoeveelheid kan in een
rechthoekig patroon worden uiteengelegd) en vierkantsgetallen (ook wel
kwadraten genoemd; de stippen vormen een vierkant).
- een vierkantsgetal is een bijzonder rechthoeksgetal: namelijk als beide
zijden van de rechthoek gelijk zijn.




1.4
Optellen = samennemen, aanvullen of toevoegen
Aftrekken = eraf halen, weghalen of wegnemen
Vermenigvuldigen = herhaald optellen, oppervlakte bepalen,

, Sara Huveneers

combineren, gelijke sprongen maken en op schaal vergroten.
Delen = herhaald aftrekken, opdelen en verdelen.
- opdelen (herhaald optellen of opvermigvuldigen) = je weet hoe groot een
groepje is, maar je moet nog uitrekenen hoeveel groepjes er in totaal zijn
- verdelen (herhaald aftrekken of 1 voor 1 uitdelen) = je weet hoeveel
groepjes er zijn, maar nog niet hoeveel groepjes je nodig hebt.

Optellen en vermenigvuldigen
Commutatieve eigenschap of wisseleigenschap = je mag termen
(optellen) of factoren (vermenigvuldigen) verwisselen.
-8+5=5+8
-8x5=5x8

Associatieve eigenschap of schakeleigenschap (bij optellen en
vermenigvuldigen) = bij optellen of vermenigvuldigen van 3 of meer
getallen kan je kiezen welke getallen je eerst optelt of vermenigvuldigt.
- 16 + (4+5) = (16 + 4) + 5
- (16 x 4) x 5 = 16 x (4x5)

Optellen, aftrekken, vermenigvuldigen en delen
Distributieve eigenschap of verdeeleigenschap
- 3 x 14 = 3 x (10 + 4) = 3 x 10 + 3 x 4 = 30 + 12 = 42
- 31936 : 8 = (32000 – 64) : 8 = 32000 : 8 – 64 : 8 = 4000 – 8 = 3992

Inverse relatie
- 56 : 8 = 7, want 7 x 8 = 56
- 17- 9 = 8, want 8 + 9 = 17

1.5
In Nederland is de volgorde van het uitspreken en schrijven niet gelijk. Je
schrijft bij 52 eerst een 5 en dan een 2. Maar je benoemt de 2 als eerst.
- Als je getallen in woorden uitspreekt geldt de systematiek van het
decimale positionele getalsysteem.
1 met 6 nullen = miljoen
1 met 9 nullen = miljard
1 met 12 nullen = biljoen
1 met 15 nullen = biljard
1 met 18 nullen = triljoen
1 met 21 nullen = triljard
1 met 24 nullen = quadriljoen
1 met 27 nullen = quadriljard


Relaties tussen getallen en hoeveelheden
- begrippen; meer, minder, evenveel, bijna, ruim, afgerond, ongeveer,
gemiddeld

Taal van bewerkingen
- een bewerking bestaat uit verschillende termen en functies, de termen
zijn vaak getallen, maar kunnen ook letters zijn (x en y)

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur sara48. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €4,69. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

80364 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!

Récemment vu par vous


€4,69  2x  vendu
  • (0)
  Ajouter