Uitwerking examenvragen elektromagnetisme
Wet van Coulomb
𝑁𝑚2
• ⃗⃗⃗⃗𝐸 = 𝐾 𝑞1 𝑞2 2 ⃗⃗⃗⃗
𝐹 1𝑟 (𝐾 =
1
= 9,0 ⋅ 109 )
𝑟 4𝜋𝜀0 𝐶2
𝐶2
• 𝜀0 = permittiviteit van het vacuüm = 8,85 ⋅ 10−12 𝑁𝑚2
• Geldt enkel als de deeltjes in rust zijn tov elkaar (want bewegende ladingen creëren
magnetische velden)
• Coulombkrachten zijn actie-reactieparen → de krachten zijn altijd even groot, maar het
effect kan anders zijn
E-veld van een dipool op de as van de dipool (= y-as)
• 𝐸⃗ = 𝐸 ⃗⃗⃗⃗+ + ⃗⃗⃗⃗
𝐸−
𝐾𝑞 𝐾(−𝑞)
• 𝐸 ⃗⃗⃗⃗+ =
|𝑟 −𝑟+ |³
(𝑟 − 𝑟+ ) en ⃗⃗⃗⃗
𝐸− = |𝑟 |³ (𝑟 − 𝑟− )
−𝑟−
• Voor wat staan de positievectoren?
𝑠 𝑠
𝑟 = (0, 𝑦) ; 𝑟+ = (0, ) ; 𝑟− = (0, − )
2 2
𝑠 2 𝑠
⇒ |𝑟 − 𝑟+ | = √(𝑦 − ) = 𝑦 −
2 2
𝑠 2 𝑠
⇒ |𝑟 − 𝑟− | = √(𝑦 + ) = 𝑦 +
2 2
• Invullen bij het elektrisch veld (1 macht in de noemer valt weg door de (𝑟 − 𝑟+ ) en (𝑟 − 𝑟− ) in de
teller)
𝑠 2 𝑠 2
(𝑦 + 2) − (𝑦 − 2) 2𝑦𝑠 2𝑦𝑝 2𝑝
𝐸⃗ = 𝐾𝑞 [ ] ⃗1𝑦 = 𝐾𝑞 [ ] ⃗1𝑦 ≈ 𝐾 4
=𝐾 3
𝑠 2 𝑠 2 𝑠 2 𝑠 2 𝑦 𝑦
(𝑦 − 2) ⋅ (𝑦 + 2) (𝑦 − 2) ⋅ (𝑦 + 2)
Met 𝑝 = (0, 𝑞𝑠) = dipoolvector en 𝑦 ≫ 𝑠 (van daar de benadering)
Afbeelding hoort bij volgend
onderdeel (want punt op de x-as),
maar voor dit onderdeel kan je
een punt op de y-as voorstellen
1
,E-veld van een dipool op het middelloodvlak (= x-as)
• 𝐸⃗ = 𝐸 ⃗⃗⃗⃗+ + ⃗⃗⃗⃗
𝐸−
𝐾𝑞 𝐾(−𝑞)
• 𝐸 ⃗⃗⃗⃗+ =
|𝑟 −𝑟+ |³
(𝑟 − 𝑟+ ) en ⃗⃗⃗⃗
𝐸− = |𝑟−𝑟 |³ (𝑟 − 𝑟− )
−
• Voor wat staan de positievectoren?
𝑠 𝑠 𝑠 2
𝑟 = (𝑥, 0) ; 𝑟+ = (0, ) ; 𝑟− = (0, − ) ⇒ |𝑟 − 𝑟+ | = |𝑟 − 𝑟− | = √𝑥 2 + ( )
2 2 2
• Invullen bij het elektrisch veld
𝐾𝑞 𝑠 𝑠 𝐾𝑞 𝑝
𝐸⃗ = [(𝑥, − ) − (𝑥, + )] = (0, −𝑠) ≈ −𝐾
3
2 2 2 2 3
2 2 𝑥3
𝑠 𝑠
(𝑥2 + (2) ) (𝑥2 + (2) )
Met 𝑝 = (0, 𝑞𝑠) en 𝑥 ≫ 𝑠 (van daar de benadering)
Wet van Gauss
• Elektrische flux: de netto flow van een elektrisch veld: Φ𝐸 = 𝐸⃗ ⋅ 𝐴
o Voor een gesloten oppervlak geldt: ΦE = ∯𝑜𝑝𝑝𝐸⃗ ⋅ 𝑑𝐴
𝑞 1 𝑞
• Elektrisch veld van een puntlading in vacuüm: 𝐸⃗ = 𝐾 ⃗
1 = ⃗
1
𝑟2 𝑟 4𝜋𝜀0 𝑟² 𝑟
• Voor een puntlading in een gesloten oppervlak geldt dus:
𝑞
ΦE = ∯ 𝐸⃗ ⋅ 𝑑𝐴 = ΦE = ∯ 𝐾 ⃗ ⋅ 𝑑𝐴 1
1 ⃗𝑟
𝑜𝑝𝑝 𝑜𝑝𝑝 𝑟2 𝑟
1 𝑞 1 𝑞 𝑞
⇒ ΦE = 2
∯ 𝑑𝐴 = 2
(4𝜋𝑟 2 ) =
4𝜋𝜀0 𝑟 4𝜋𝜀0 𝑟 𝜀0
• Voor meerdere puntladingen krijgen we de integrale vorm van de Wet van Gauss:
∑𝑖 𝑞𝑖 𝑄𝑛𝑒𝑡𝑡𝑜,𝑖𝑛
ΦE = =
𝜀0 𝜀0
• De lokale vorm van de Wet van Gauss wordt gegeven door
𝜌(𝑟) 𝜕𝐸 𝜕𝐸 𝜕𝐸
div 𝐸⃗ (𝑟) = 𝜀 met div 𝐸⃗ (𝑟) = 𝜕𝑥𝑥 + 𝜕𝑦𝑦 + 𝜕𝑧𝑧
0
Overgang tussen de 2 vormen van de Wet van Gauss
• Via Stelling van Green:
𝜌 𝑄𝑛𝑒𝑡𝑡𝑜,𝑖𝑛
∭ div 𝐸⃗ 𝑑𝑉 = ∯ 𝐸⃗ 𝑑𝐴 ⇔ ∭ 𝑑𝑉 =
𝜀0 𝜀0
2
,Wet van Gauss + overgang tussen de 2 vormen
Zie vraag 1
Elektrisch veld berekenen buiten een uniform geladen diëlektrische sfeer
𝑄
• Wet van Gauss buiten de sfeer (𝑟 > 𝑅): ∯ 𝐸⃗ ⋅ 𝑑𝐴 = 𝑛𝑒𝑡𝑡𝑜,𝑖𝑛
𝑜𝑝𝑝 𝜀0
• Linkerlid berekenen: ∯𝑜𝑝𝑝𝐸⃗ ⋅ 𝑑𝐴 = ∯𝑜𝑝𝑝𝐸 ⋅ 𝑑𝐴 (want E en dA zijn evenwijdig)
⇔ 𝐸∯ 𝑑𝐴 = 𝐸 ⋅ 4𝜋𝑟 2
𝑄𝑛𝑒𝑡𝑡𝑜,𝑖𝑛 𝑄
• Rechterlid berekenen: 𝜀0
=𝜀 (want alle lading zit in het Gauss-oppervlak)
0
• Stel beide kanten aan elkaar gelijk en vorm om naar 𝐸:
𝑄
𝐸(𝑟) =
4𝜋𝜀0 𝑟 2
• Je kan de sfeer in dit geval dus als een puntlading beschouwen (zelfde formule maar met 𝑞)
Elektrisch veld berekenen binnen een uniform geladen diëlektrische sfeer
𝑄
• Wet van Gauss binnen de sfeer (𝑟 < 𝑅): ∯ 𝐸⃗ ⋅ 𝑑𝐴 = 𝑛𝑒𝑡𝑡𝑜,𝑖𝑛
𝑜𝑝𝑝 𝜀0
• Linkerlid berekenen: ∯𝑜𝑝𝑝𝐸⃗ ⋅ 𝑑𝐴 = 𝐸 ⋅ 4𝜋𝑟 2
(analoog aan vorige puntje)
• Rechterlid berekenen: nu zit niet alle lading in het Gauss-oppervlak → gebruik lokale vorm
𝑄𝑛𝑒𝑡𝑡𝑜,𝑖𝑛 1 1 1 𝑄 𝑄 𝑟3
= ∭ 𝜌𝑑𝑉 = 𝜌𝑉𝑏𝑜𝑙,𝑟 = 𝑉 =
𝜀0 𝜀0 𝜀0 𝜀0 𝑉𝑏𝑜𝑙,𝑅 𝑏𝑜𝑙,𝑟 𝜀0 𝑅 3
• Stel beide kanten aan elkaar gelijk en vorm om naar 𝐸:
𝑄
𝐸(𝑟) = 𝑟
4𝜋𝜀0 𝑅³
3
, Gedrag ladingsverdeling in een geleider in elektrostatisch evenwicht
• Elektrostatisch evenwicht: geen elektrische stroom in de geleider → 𝐸⃗ = 0
• Er is dus ook geen elektrische flux in het Gauss-oppervlak: ΦE = 0
→ 𝑄𝑛𝑒𝑡𝑡𝑜,𝑖𝑛 = 0
• Alle excesladingen zitten dus op het oppervlak, maar ook door het oppervlak gaat geen
stroom → het elektrisch veld moet loodrecht op het oppervlak van de geleider staan
𝑄𝑛𝑒𝑡𝑡𝑜,𝑖𝑛 𝜂𝐴 𝜂
Φ𝐸 = = 𝐸𝐴 ⇔ = 𝐸𝐴 ⇔ 𝐸 =
𝜀0 𝜀0 𝜀0
(Met 𝜂 = oppervlakte ladingsdichtheid)
4