Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting - Advanced Data Analysis €7,49   Ajouter au panier

Resume

Samenvatting - Advanced Data Analysis

 48 vues  0 fois vendu

- Introduction - Processing principles - Data mining - Principal component analysis - Supervised learning - Regression - Machine learning methods

Aperçu 4 sur 113  pages

  • 19 octobre 2022
  • 113
  • 2020/2021
  • Resume
Tous les documents sur ce sujet (19)
avatar-seller
lizaburdz
Advanced data analysis
Contents
Chapter 1 - Introduction .................................................................................................................... 6
A bit of context .............................................................................................................................. 6
Introduction .............................................................................................................................. 6
Characteristics of big data .......................................................................................................... 6
But what is data ............................................................................................................................. 7
Objects and attributes ............................................................................................................... 7
Attribute types .......................................................................................................................... 8
Properties of attributes.............................................................................................................. 8
Discrete vs continuous attributes ............................................................................................... 8
Dataset types ................................................................................................................................ 9
Data mining ................................................................................................................................. 11
General.................................................................................................................................... 11
Is it data mining? ..................................................................................................................... 11
Data mining and statistics ........................................................................................................ 11
Data mining challenges ............................................................................................................ 12
Tasks ........................................................................................................................................... 13
General.................................................................................................................................... 13
Supervised ............................................................................................................................... 13
Unsupervised........................................................................................................................... 14
Data mining applications ............................................................................................................. 15
Overview ..................................................................................................................................... 15
Where are we with data mining now ........................................................................................... 15
Chapter 2 – Processing principles .................................................................................................... 16
Introduction ................................................................................................................................ 16
Unstructured data ................................................................................................................... 16
Common data processing steps ................................................................................................... 17
Overview ................................................................................................................................. 17
Feature extraction ................................................................................................................... 17
Attribute transformation ......................................................................................................... 17
Discretization........................................................................................................................... 18
Aggregation ............................................................................................................................. 18

1

, Noise removal.......................................................................................................................... 18
Identifying outliers................................................................................................................... 19
Sampling .................................................................................................................................. 19
Handling duplicate data ........................................................................................................... 20
Handling missing values ........................................................................................................... 20
Dimensionality reduction ......................................................................................................... 21
Processing steps for specific data types ....................................................................................... 22
Image data............................................................................................................................... 22
Survey data.............................................................................................................................. 23
Sequence data ......................................................................................................................... 23
Text data ................................................................................................................................. 24
Omics data............................................................................................................................... 25
Chapter 3 - Data mining – Unsupervised clustering .......................................................................... 31
Unsupervised vs supervised ..................................................................................................... 31
Introduction ................................................................................................................................ 31
Clustering ................................................................................................................................ 31
Similarity ................................................................................................................................. 32
Dendograms ............................................................................................................................ 34
Hierarchical clustering vs partitional clustering ........................................................................ 36
Hierarchical clustering ................................................................................................................. 36
General.................................................................................................................................... 36
Bottom-up ............................................................................................................................... 37
How do you calculate distance between already existing clusters ............................................ 37
Single linkage = nearest neighbour........................................................................................... 38
Complete linkage = Furthest neighbour ................................................................................... 39
Group average ......................................................................................................................... 39
Ward’s method ........................................................................................................................ 40
Comparison ............................................................................................................................. 40
Partitional clustering ................................................................................................................... 41
General.................................................................................................................................... 41
How many clusters?................................................................................................................. 41
How to tell right number of clusters? ....................................................................................... 41
Objective function: squared error ............................................................................................ 42
k-means steps.......................................................................................................................... 42
Importance of choosing initial centroids .................................................................................. 44
k-means limitations ................................................................................................................. 44

2

, k-means: conclusion ................................................................................................................ 45
Chapter 4 - Principal component analysis ........................................................................................ 46
Introduction ................................................................................................................................ 46
Principal component analysis ................................................................................................... 46
Multivariate data ..................................................................................................................... 46
Basic variable statistics ............................................................................................................ 46
Data transformation ................................................................................................................ 47
Comparison between variables ................................................................................................ 48
Still too many variables ............................................................................................................ 50
Data projection ........................................................................................................................ 50
PCA - Theory ................................................................................................................................ 51
Introduction ............................................................................................................................ 51
How PCA works........................................................................................................................ 51
PCA output .............................................................................................................................. 52
PCA summary .......................................................................................................................... 53
PCA usage ................................................................................................................................ 53
How many PC is enough to cover a data set? ........................................................................... 53
PCA - examples ............................................................................................................................ 54
Possum dataset ....................................................................................................................... 54
Nutrition dataset ..................................................................................................................... 56
B-cell receptor sequencing ....................................................................................................... 59
Metagenomics data ................................................................................................................. 60
t-SNE ........................................................................................................................................... 62
What is t-SNE? ......................................................................................................................... 62
How does t-SNE work?............................................................................................................. 62
PCA vs t-SNE ............................................................................................................................ 63
Perplexity ................................................................................................................................ 63
t-SNE for single cell RNAseq ..................................................................................................... 63
Chapter 5 - Supervised learning ....................................................................................................... 64
Classification problem ................................................................................................................. 64
Cat or dog problem .................................................................................................................. 64
Pigeon problem ....................................................................................................................... 64
Grasshopper problem .............................................................................................................. 64
Regression vs classification ...................................................................................................... 66
Linear classifier ............................................................................................................................ 66
Grasshopper example .............................................................................................................. 67

3

, Decision boundary ................................................................................................................... 67
Examples ................................................................................................................................. 68
Iris dataset ............................................................................................................................... 69
Support vector machine........................................................................................................... 69
Decision value.......................................................................................................................... 70
Classifier overview ................................................................................................................... 71
Estimating the performance of the classifier ................................................................................ 71
Predictive accuracy .................................................................................................................. 71
Class labels .............................................................................................................................. 72
Confusion matrix ..................................................................................................................... 72
Type I error vs type II error ...................................................................................................... 73
Values that can be acquired from confusion matrix ................................................................. 73
Thresholds and accuracy .......................................................................................................... 73
ROC-curve ............................................................................................................................... 75
PR curve – precision recall curve .............................................................................................. 76
ROC vs PR curves ..................................................................................................................... 76
Nearest Neighbour Classifier........................................................................................................ 77
Chapter 6 - Regression..................................................................................................................... 79
Introduction ................................................................................................................................ 79
Introductory example .............................................................................................................. 79
Classification vs regression....................................................................................................... 79
Simple linear regression............................................................................................................... 80
General.................................................................................................................................... 80
Multiple linear regression ............................................................................................................ 80
General.................................................................................................................................... 80
Best fit ..................................................................................................................................... 81
Objective function ................................................................................................................... 81
Evaluation................................................................................................................................ 82
Non-linear regression .................................................................................................................. 83
Logistic regression ................................................................................................................... 83
Overfitting ................................................................................................................................... 83
How do we estimate the capacity of our model to overfit? ...................................................... 84
K-fold cross validation – how do we estimate the accuracy of our model? ............................... 84
Factors to consider when building a model .................................................................................. 85
Speed and scalability ............................................................................................................... 85
Interpretability ........................................................................................................................ 86

4

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur lizaburdz. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €7,49. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

80467 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€7,49
  • (0)
  Ajouter