This summary covers all you need to know to pass the course Neurons and synapses. It contains information from the lectures and as well as the book Principles of neural science by kandell. The topics are explained in an understandable manner, so that you can fully get the in depth knowledge that yo...
College aantekeningen Leren en geheugen (5102LEGE9Y) Week 5
Collegeaantekeningen Leren en geheugen (5102LEGE9Y) Week 6
Collegeaantekeningen leren en geheugen (5102LEGE9Y) Week 7
Tout pour ce livre (17)
École, étude et sujet
Radboud Universiteit Nijmegen (RU)
Bsc Medical Biology / Neurology / Neurophysiology
Neurons and synapses (NWIBB094)
Tous les documents sur ce sujet (1)
2
revues
Par: erinpaige • 2 année de cela
Par: daanjochem • 2 année de cela
Vendeur
S'abonner
StephSilentium
Avis reçus
Aperçu du contenu
Neurons and synapses
Content
Action potentials.................................................................................................................................3
Types of neurons ................................................................................................................................6
Classification of inhibitory neurons .................................................................................................7
l. Morphology classification .........................................................................................................7
II. Electrophysiology classification: ..............................................................................................8
III. Molecular classification ..........................................................................................................9
Four examples of inhibitory neurons: ..............................................................................................9
Chemical synapse part I .................................................................................................................... 10
Structure of the synapse ............................................................................................................... 10
Two types of synapses .................................................................................................................. 11
Dendritic spines ............................................................................................................................ 12
Axonal Boutons ............................................................................................................................. 12
Neurotransmitters ........................................................................................................................ 13
Neuromuscular junction ............................................................................................................ 13
Central nervous system ............................................................................................................. 13
Autonomic nervous system ....................................................................................................... 14
Receptors...................................................................................................................................... 14
Neurotransmitter receptors ...................................................................................................... 14
Subtypes of neurotransmitter receptors.................................................................................... 15
Neuromodulators and metabotropic receptors ......................................................................... 15
Neurotransmitter analogues ..................................................................................................... 16
Glutamate receptors ................................................................................................................. 16
GABA receptors......................................................................................................................... 17
Chemical synapse part ll.................................................................................................................... 17
EPP: Neuromuscular junction ........................................................................................................ 18
EPSP.............................................................................................................................................. 19
IPSP .............................................................................................................................................. 19
Electrical synapse.............................................................................................................................. 20
Parkinson’s Disease........................................................................................................................... 21
Synaptic plasticity part l .................................................................................................................... 24
Long term potentiation (LTP) ........................................................................................................ 25
Long-term depression (LTD) .......................................................................................................... 26
Spike-timing dependent plasticity (STDP) ...................................................................................... 27
, LTP in inhibitory synapse ............................................................................................................... 27
Homeostatic plasticity ................................................................................................................... 27
Morphological changes by plasticity .............................................................................................. 28
Synaptic plasticity part ll ................................................................................................................... 29
Short term plasticity ......................................................................................................................... 30
Neural Circuit & Signal integration .................................................................................................... 31
Summations .................................................................................................................................. 31
Layer-specific connections in neocortex ........................................................................................ 33
Molecular dynamics at the synapse .................................................................................................. 34
Delivery of proteins to synapses .................................................................................................... 35
Sushi belt model........................................................................................................................ 36
Surface diffusion for transmembrane proteins .......................................................................... 36
Local mRNA translation/protein synthesis ................................................................................. 38
Neural recording methods ................................................................................................................ 38
Pros and cons of recording techniques .......................................................................................... 39
Network properties of neuronal tissue .............................................................................................. 41
Memory in dissociated cortical networks ...................................................................................... 43
Extra notes after re-watching all the lectures: ................................................................................... 44
,Action potentials
After touching the receptor of, for example, a finger, the membrane potential gets depolarized. So
the membrane potential gets less negative. This depolarization is transient (=only lasts for a short
period of time) and the membrane potential will go back to its resting state.
From the resting membrane potential, if the stimulus is high enough and goes up (above the
threshold), action potential takes place. This is depolarization. If the membrane potential gets more
negative, hyperpolarization takes place.
Action potentials are:
• Short (about 1 ms)
• All-or-none
• Standard shape and amplitude
• Frequency encodes strength
To understand the action potential, you first have to understand the membrane
potential in rest. The changes in membrane potential is to achieve equilibrium.
Membrane potential is influenced by two underlying mechanisms:
• Chemical gradient: difference in intra and extra-cellular ion concentrations.
• Electrical gradient
If the K+-channels are open, K+ moves towards the negative side until equilibrium
is reached. ~-58 for K+(potassium) and ~58 for Na+ outside the cell. Only a small
amount of ions have to pass through the channels for equilibrium so the concentration in- and
outside the membrane stays more or less the same.
Nernst-equation is used to calculate the rest potential and is influenced by with absolute
temperature (T), ion charge (z) the gas- (R) and Faraday (F) constants as well as the equilibrium
potentials of the ions in the solution.
During action potential more Na+ channels open up, allowing Na+ ions to enter the cell and
depolarizes the cell. After depolarization, resting potential settles at a new level where the influx of
Na+ is balanced by the efflux of K +.
In a neuron several ions play a role , as well as the relative permeability (P) of the membrane (as
determined by how open the ion-channels are). This is calculated by the Goldman-equation.
In rest the permeability for K+ is higher (negative potential). During the action potential the
membrane will be more permeable for Na+ (positive potential).
The Na-K+ pump (and other pumps and transporters) regulate the
Chemical concentration gradients, but are not directly involved in the
action potential generation. It is the conductance of the ion channels
that change.
, The opening and closing can be regulated by different types of stimuli:
Ligand gating, Protein phosphorylation, Voltage gating, Stretch or pressure.
During action potential it is the voltage dependent gating that changes. See figure below: Sequential
opening of voltage-gated Na+ and K+ channels generating the action potential.
Sodium (Na+) channels: Permissive and non-permissive states. (activation gate opens
fast at depolarization, inactivation gate slowly closes at depolarization) An ion channel is open when
all gates are in the permissive state. If any of the gates is non-permissive, ions cannot flow.
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur StephSilentium. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €5,99. Vous n'êtes lié à rien après votre achat.