, 1 Chapter 1, Utility Theory and Insurance
1.1 Introduction
St. Petersburg Paradox For price P, enter game. n trials, gain is 2n . Expected gain:
P ∞ n n
n=1 2 (1/2) = ∞. But, unless P is small only a few will enter game.
1.2 Utility functions and their properties
E[(u(w − X)]
• Property 1: Non-decreasing functions: u′ (w) ≥ 0. Marginal utility is non-negative.
• Property 2: Concave (risk-averse agents): u′′ (w) ≤ 0 or convex (risk-loving): u′′ (w) ≥ 0
Remark: E(u(w − X)) ≤ E(u(w − Y )) ⇐⇒
E(a ∗ u(w − X) + b) ≤ E(a ∗ u(w − Y ) + b)
1.2.1 Useful results
Risk aversion coefficient: r(w) of utility func. u(·) at wealth w is:
′′
(w)
r(w) = − uu′ (w)
Jensen’s inequality: If v(·) is convex: E(v(X)) ≥ v(E(X))
If v(·) is concave: E(v(X0) ≤ v(E(X)).
1.3 Implications for insurance business
Policyholders: risk averse, insurance company: risk averse or neutral.
1.3.1 The policyholder
Utility function u(·), is concave or linear and increasing. Buy insurance against loss X for premium
p. Then expected loss: E(X) = µ < ∞. If you buy, utility: u(w − P ). If you do not buy, utility:
E(u(w − X)). By Jensen:
E(u(w − X)) ≤ u(E(w − X)) = u(w − E(X)) = u(w − µ).
Max. premium acceptable: u(w − P + ) = E(u(w − X)) ⇒ P + ≥ µ
1.3.2 The insurance company
Utility function U (·), is concave or linear and increasing. P − : minimum premium company wants
to receive. By Jensen:
U (W ) = E(U (W + P − − X)) ≤ U (E(W + P − − X)) = U (W + P − − µ) ⇒ P − ≥ µ
1.3.3 When is insurance possible?
If P + ≥ P − ≥ µ
1.4 Stop-loss reinsurance
When claims are too big for an insurance company it transfers the risk to a reinsurance company.
Stop-loss reinsurance: For a loss X the payment by the reinsurer to the insurer is:
(
X − d if X > d
(X − d)+ = max X − d, 0 =
0 if X ≤ d
3
Les avantages d'acheter des résumés chez Stuvia:
Qualité garantie par les avis des clients
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur carinewildeboer. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €25,48. Vous n'êtes lié à rien après votre achat.