summary of all lectures and seminar 4 of Statistics 2 (Faculty of Spatial Sciences). The summary includes screenshots from examples in the slides (SPSS output) and explanation. Also contains all questions and answers to the pratice exam.
One-way Analysis of Variance
One-way ANOVA: Comparing means of more than 2 groups.
H0: Population mean is equal between groups
Example: In the population, the average travel time home-to-work is equal between groups
based on region of residence.
Requirements one-way ANOVA:
- independent cases
- ratio/interval variable
- data in more than 2 groups
● each group normally distributed or sufficient amount of cases (more than 30)
● standard deviation between groups is equal (homoscedasticity)
Standard deviation equal?
● Levene’s test
● Rule of thumb: if biggest standard deviation < 2* smallest standard deviation, we
assume standard deviation is equal.
Why Analysis of Variance?
Two types of variance:
- Within groups (WITHIN or ERROR)
- between groups (FIT or BETWEEN)
,If: Variance between groups > variance within group ⇒ Reject H0 (population means groups
not equal)
Variance between groups:
Yi bar = mean each group
Ybar =
Ni = number of cases in each group
Variance within groups:
formula 1: for information on groups
formula 2: for information on individual cases
N = number of cases (total)
,Ni = number of cases in each group
t = number of groups
F-statistic (same as z- and t-statistic -> number to probability).
F = mean sum of squares between groups / mean sum of squares within groups
Differences between groups increase F -> This test is one-sided
p-value = 0,000 -> significant -> reject H0 -> We assume group means are not equal
We now know groups are different. But which groups are different? so we can move on to
multiple comparisons to compare the groups to each other.
Multiple comparisons (only when significant one-way ANOVA)
Why: Why this test except of t-test for every group? -> many t-tests is time consuming and
the chance of making a type I error increases significantly
,Error Bar Plot:
- When confidence intervals overlap, we suspect they do not differ.
- When confidence intervals do not overlap, we suspect they differ.
, Compares each group to all other groups. a star (*) behind the mean differences shows it is
significant (sig. value also shows that).
if 0 in confidence interval -> not significant
if 0 not in c.i. -> significant
Example:
One-way ANOVA: p = 0,000 -> significant -> reject H0 -> we may assume that the group
means are not equal.
Multiple comparisons: significant difference between the West and the North, and the West
and the South.
Testing contrast:
Test hypothesis that you possibly have about the degree in which specific groups differ from
each other.
Sample contrast (c) -> Linear combination of sample means
H0: population contrast = 0
Language and logic:
Normal H0: difference between means
Also possible H0: relationship between variables
Les avantages d'acheter des résumés chez Stuvia:
Qualité garantie par les avis des clients
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur daimyschrijver. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €6,39. Vous n'êtes lié à rien après votre achat.