Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting Redeneren en Bewijzen €2,99   Ajouter au panier

Resume

Samenvatting Redeneren en Bewijzen

 27 vues  4 fois vendu
  • Cours
  • Établissement

Redeneren & Bewijzen in de wiskunde. Op tal van manieren kun je wiskundig aantonen dat iets wel of niet kan of bestaat (in de wiskunde). In dit document wordt een aantal zaken beschreven. Denk aan het Euclidische algoritme, lineaire Diophantische vergelijkingen, bewijzen uit het ongerijmde of mi...

[Montrer plus]
Dernier document publié: 2 année de cela

Aperçu 5 sur 22  pages

  • 28 mars 2022
  • 2 avril 2022
  • 22
  • 2021/2022
  • Resume
avatar-seller
[Bedrijfsnaam]


Redeneren & Bewijzen
Wiskunde


Deze samenvatting is gebaseerd op de reader van Instituut Archimedes
(vakgroep wiskunde). Het instituut maakt op hun beurt grotendeels
gebruik van het werk: Syllabus algebra en bewijzen (1 & 2) door
J. Otten, Fontys Lerarenopleidingen.

, 1



Inhoud
Voorkennis
Getalverzamelingen
Deelbaarheid
Grootste gemene deler
Niveaus van zekerheid
Drie niveaus van zekerheid
Definities en stellingen
Logica en bewijsmethoden
Beweringen met kwantoren
Samengestelde beweringen
Bewijs uit het ongerijmde
Bewijs door volledige inductie
Het ladenprincipe en de soepketelmethode
Getaltheorie
Lineaire Diophantische vergelijkingen
Modulorekenen

, 2



Voorkennis
Getalverzamelingen
- Natuurlijke getallen N=¿ {0,1,2,3…..}
- Positief natuurlijke getallen N +¿ of N ={1,2,3 ….. }¿
¿0


- Gehele getallen Z=¿ {…-3. -2. -1, 0, 1, 2, 3 ….}
- Rationale getallen Q=¿ {…als breuk te schrijven…)

Q= {ab : a , b∈ Z , b ≠ 0}
- Reële getallen R=¿ { .. niet als breuk te
schrijven….bv √2}
- Complexe getallen C={ a+ bi|a , b ∈ R }
- Even getallen E={... ,−6 ,−4 ,−2 , 0,2 , 4 , 6 , … ..}
- Oneven getallen O={... ,−5 ,−3 ,−1 ,1 , 3 ,5 , … }
- Priemgetallen P={2 ,3 , 5 , 7 ,11. 13 … ..}



- N ⊂ Z ⊂Q⊂ R ⊂ C (⊂ ‘is een ware deelverzameling van’)




Deelbaarheid

, 3


Definitie van deler
Voor alle gehele getallen a en b geldt:
“b is deler van a : betekent: “er bestaat een geheel getal q , zó, dat
a=b ∙ q.

Notatie: is deler van a : b∨a


Definitie van priemgetal
Voor natuurlijke getallen n ongelijk aan nul en ongelijk aan 1 geldt: “n
is een priemgetal” betekent: “n heeft precies twee positieve delers”.


Elk natuurlijk getal (behalve 0 en 1) heeft een priemfactorontbinding. Je
kunt uit deze ontbinding het aantal positieve delers van dat natuurlijk
getal bepalen.




Grootste gemene deler
Definitie van grootste gemene deler (ggd)l
De ggd van de gehele getallen a en b is het grootste gehele getal d
waarvoor geldt:
d is deler van a ……..en d is deler van b

Notatie: ggd (a , b)


Voorbeeld priemfactorontbinding:
Bepaal de ggd van de getallen 72 en 120 middels priemfactorontbinding:
3
72=2 ∙ 3
2
& 120=23 ∙ 3 ∙5 .
Bekijk de gemeenschappelijke priemfactoren zijn: 23 ∙3. Dit is 24. Dus de
ggd(72, 120) = 24.




Algoritme van Euclides
Dit algoritme berust op het delen met rest. De definitie:

, 4


Beschouw de gehele getallen a en b met b≠ 0. Het quotiënt
q van a en b en de rest van r van a en b zijn de twee gehele getallen waarvoor
geldt: waarvoor geldt:
a=q ∙ b+r met 0 ≤ r ≤|b|


Voorbeeld: bepaal (wederom) ggd(120, 72):
a = 120 en b = 36 → 120 = 1 x 72 + 48
a = 72 en b = 48 → 72 = 1 x 48 + 24
a = 48 en b = 24 → 48 = 2 x 24 + 0
Bij de laatst stap is er geen rest meer en dus: ggd(120,72) = 24
(Bij berekeningen is het schrijven zoals in de rechter voldoende).


Het algoritme van Euclides berust op twee eigenschappen:
I Voor alle a, b, q, r ∈ Z geldt: Als a = q ∙ b + r, dan is
ggd(a, b) = ggd(b, r);
II Als a ∈ {1, 2, 3, ...} dan geldt: ggd(a, 0) = a.


En het berust op het volgende feit:
III Het proces is dus niet oneindig lang, maar stopt uiteindelijk.




Niveaus van zekerheid

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur BFox. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €2,99. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

78998 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€2,99  4x  vendu
  • (0)
  Ajouter