Analyse vervolg
Hoofdstuk 4 – Integreren
4.5 De substitutiemethode
• Als 𝑔 een differentieerbare functie is met als beeld een interval 𝐼 waarop de functie 𝑓 continu is,
dan geldt:
∫ 𝑓(𝑔(𝑥)) ⋅ 𝑔′ (𝑥) 𝑑𝑥 = ∫ 𝑓(𝑢) 𝑑𝑢
waarbij het rechterlid het voorschrift is van een functie in 𝑥 door middel van de substitutie
𝑢 = 𝑔(𝑥).
• Stappenplan voor het primitiveren met de substitutiemethode:
1. Schrijf de functie op.
2. Bekijk of de functie makkelijker te primitiveren is met een substitutie.
3. Bekijk of er een goede substitutie mogelijk is. Kijk ook of je de afgeleide van je substitutie ziet.
4. Geef aan de rechterkant van het papier aan dat 𝑢 = 𝑔(𝑥).
5. Geef aan de rechterkant van het papier aan dat 𝑑𝑢 = 𝑔′ (𝑥) 𝑑𝑥.
6. Substitueer onder het integraalteken.
7. Bepaal de primitieve. Zet de integratieconstante erachter (+ 𝐶).
8. Druk de functie weer uit in 𝑥. Gebruik dat 𝑢 = 𝑔(𝑥).
• Als 𝑎 en 𝑏 reële getallen zijn, dan geldt voor de bepaalde integraal:
𝑏 𝑔(𝑏)
∫ 𝑓(𝑔(𝑥)) ⋅ 𝑔′ (𝑥) 𝑑𝑥 = ∫ 𝑓(𝑢) 𝑑𝑢
𝑎 𝑔(𝑎)
• Stappenplan voor het integreren met de substitutiemethode:
1. Schrijf de functie op.
2. Bekijk of de functie makkelijker te primitiveren is met een substitutie.
3. Bekijk of er een goede substitutie mogelijk is. Kijk ook of je de afgeleide van je substitutie ziet.
4. Geef aan de rechterkant van het papier aan dat 𝑢 = 𝑔(𝑥).
5. Geef aan de rechterkant van het papier aan dat 𝑑𝑢 = 𝑔′ (𝑥) 𝑑𝑥.
6. Bereken aan de rechterkant van het papier de nieuwe grenzen. Deze zijn 𝑔(𝑎) en 𝑔(𝑏).
7. Substitueer onder het integraalteken. Vervang ook de grenzen door 𝑔(𝑎) en 𝑔(𝑏)
8. Bepaal de integraal.
Les avantages d'acheter des résumés chez Stuvia:
Qualité garantie par les avis des clients
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur joshtukker. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €4,99. Vous n'êtes lié à rien après votre achat.