Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting Business Intelligence (Data Science for Business) €5,95   Ajouter au panier

Resume

Samenvatting Business Intelligence (Data Science for Business)

1 vérifier
 221 vues  14 fois vendu

Dit is een samenvatting van het boek "Data Science for Business" dat werd gebruikt bij het vak "Business Intelligence". Daarnaast bevat het ook lesnotities van de colleges van Len Lemeire. Door enkel deze samenvatting te studeren ben ik met 19/20 geslaagd.

Aperçu 4 sur 99  pages

  • Oui
  • 26 octobre 2021
  • 99
  • 2020/2021
  • Resume
book image

Titre de l’ouvrage:

Auteur(s):

  • Édition:
  • ISBN:
  • Édition:
Tous les documents sur ce sujet (10)

1  vérifier

review-writer-avatar

Par: HandelswetenschappenUgenttt • 2 année de cela

avatar-seller
Marketer
Business Intelligence
0 Introduction.......................................................................................................................... 4
0.1 Belang data voor bedrijven ......................................................................................................... 4
0.2 Belang data voor studenten ........................................................................................................ 5
1 Data-analytical thinking ........................................................................................................ 5
1.1 Waarom? ..................................................................................................................................... 5
1.2 Voorbeelden ................................................................................................................................ 6
1.3 Data analytisch denken ............................................................................................................... 6
1.4 Data Mining & data science......................................................................................................... 6
2 Business problems and data science solutions ....................................................................... 7
2.1 Data mining tasks ........................................................................................................................ 7
2.2 Supervised vs unsupervised methods ......................................................................................... 8
2.3 Data mining ................................................................................................................................. 9
2.4 Implicaties voor het managen van het Data Science team ....................................................... 12
2.5 Andere analyse technieken en technologieën .......................................................................... 12
3 Introduction to predictive modelling ................................................................................... 14
3.1 Terminologie.............................................................................................................................. 14
3.2 Supervised segmentation .......................................................................................................... 15
3.3 Selecting informative attributes ................................................................................................ 16
3.4 Supervised segmentation with Tree-Structured models .......................................................... 19
3.5 Visualizing segmentations ......................................................................................................... 22
3.6 Probability estimation ............................................................................................................... 23
3.7 Samenvatting............................................................................................................................. 24
4 Fitting a model to data ........................................................................................................ 25
4.1 Linear discriminant functions .................................................................................................... 25
4.2 Optimizing an objective function .............................................................................................. 26
4.3 Support vector machines .......................................................................................................... 27
4.4 Regression via mathematical functions..................................................................................... 28
4.5 Classification: Scoring and ranking ............................................................................................ 29
4.6 Class probability estimation & Logistic regression .................................................................... 29
4.7 Logistic regression vs tree induction ......................................................................................... 32
4.8 Wat als de data niet-lineair is? .................................................................................................. 33
5 Overfitting and its avoidance............................................................................................... 34
5.1 Overfitting & Generalisatie ....................................................................................................... 34
5.2 Overfitting herkennen ............................................................................................................... 34

, 2


5.3 Waarom is overfitting slecht ..................................................................................................... 38
5.4 Voorkomen van overfitting ....................................................................................................... 39
6 Similarity, Neighbors & Clusters .......................................................................................... 43
6.1 Similarity & distance .................................................................................................................. 43
6.2 Nearest neighbors ..................................................................................................................... 45
6.3 Geometrische interpretatie, overfitting en complexity control................................................ 47
6.4 Problemen met nearest neightbor methode ............................................................................ 48
6.5 Technische details uitgelegd ..................................................................................................... 49
6.6 Clustering as similarity-based segmentation ............................................................................ 52
6.7 Clustering results ....................................................................................................................... 55
6.8 Wat hebben we tot nu toe gezien ............................................................................................. 56
7 What is a good model? ........................................................................................................ 57
7.1 Evaluating classifiers.................................................................................................................. 57
7.2 Generalizing beyond classification ............................................................................................ 59
7.3 Expected value framework ........................................................................................................ 59
7.4 Baseline performance ............................................................................................................... 63
8 Visualizing model performance ........................................................................................... 64
8.1 Ranking instead of classifying .................................................................................................... 64
8.2 Profit curves .............................................................................................................................. 65
8.3 ROC Graphs & curves ................................................................................................................ 66
8.4 Cumulative Response en lift curve ............................................................................................ 69
8.5 Voorbeeld churn ........................................................................................................................ 70
9 Evidence and Probabilities .................................................................................................. 73
9.1 Combining Evidence Probabilistically ........................................................................................ 73
9.2 Bayes’ Rule ................................................................................................................................ 75
9.3 Evidence lift ............................................................................................................................... 77
10 Representing and Mining Tekst ........................................................................................ 78
10.1 Tekst .......................................................................................................................................... 78
10.2 Terminologie (geleend uit IR = information retrieval) .............................................................. 79
10.3 Bag of words .............................................................................................................................. 79
10.4 Beyond bag of words ................................................................................................................. 82
10.5 Voorbeeld: Mining News Stories for stock price movement .................................................... 83
11 Decision Analytic Thinking ll: Toward Analytical Engineering ............................................ 86
11.1 Case: Geldinzameling vereniging............................................................................................... 86
11.2 Case: Churn................................................................................................................................ 88
12 Other Data Science Tasks and Techniques ........................................................................ 89

, 3


12.1 Co-occurrences & associations.................................................................................................. 89
12.2 Profiling ..................................................................................................................................... 91
12.3 Link prediction ........................................................................................................................... 92
12.4 Data reduction & latent information ........................................................................................ 92
12.5 Bias, variance & ensemble methods ......................................................................................... 93
12.6 Causal Explanation .................................................................................................................... 94
13 Data science and Business Strategy .................................................................................. 95
13.1 Competitief voordeel ................................................................................................................ 95
13.2 Data science management ........................................................................................................ 96
13.3 Aantrekken & behouden van data scientists ............................................................................ 97
13.4 Kleine bedrijven ......................................................................................................................... 97
13.5 Data science maturity ................................................................................................................ 97
13.6 Data mining voorstellen evalueren ........................................................................................... 97
14 Conclusie ........................................................................................................................ 98
14.1 Fundamentele concepten van data science .............................................................................. 98
14.2 Fundamentele concepten in een case....................................................................................... 98
14.3 Andere manier van denken aan een businessprobleem ........................................................... 99
14.4 Wat data niet kan doen ............................................................................................................. 99
14.5 Ethiek & privacy ......................................................................................................................... 99
14.6 Cloud sourcing ........................................................................................................................... 99

, 4


0 Introduction
Belang data voor bedrijven
Jaarlijks:
• Verdubbeld de hoeveelheid data
• Daalt de kost om data bij te houden
Big Data: Een brede verzameling aan data van verschillende bronnen
Maslow’s Hierarchy of Big Data:
• Data verzamelen, dit geeft ons informatie, hier vervolgens kennis uit halen
o Met wijsheid omgaan met deze data
Data warehouse vs data lake
• Data warehouse:
o Data wordt verwerkt in één schema voordat ze in het warehouse bijgehouden
worden
▪ Opmerking: Data is nooit beschikbaar in de vorm dat je ze nodig hebt
o De analyse gebeurt met de “cleansed” data
o ETL: Extract transform load
• Data lake:
o Data wordt “raw” en ongestructureerd bijgehouden in data lake
o Data wordt pas geselecteerd en georganiseerd wanneer dit nodig is




Figuur 1: Data warehouse vs data lake

Data in bedrijven: er is data aanwezig, dit wordt omgezet in inzichten waarop men reageert

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur Marketer. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €5,95. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

79202 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€5,95  14x  vendu
  • (1)
  Ajouter