Eline Opsommer 2e jaar Toegepaste ICT-Apps&Gamification
Statistiek
6 Enkele kansverdelingen (pg 1)
6.1 Inleiding (pg 1)
6.2 Combinatoriek (pg 2)
𝑛!
- 𝐶𝑛𝑘 =
𝑘!(𝑛−𝑘)!
2 10!
o Vb. Op hoeveel manieren 2 personen kiezen uit groep van 10? 𝐶10 = = 45
2!(10−2)!
- Speciale gevallen & eigenschappen:
o 𝐶𝑛0 = 1 = 𝐶𝑛𝑛
o 𝐶𝑛1 = n = 𝐶𝑛𝑛−1
o 𝐶𝑛𝑘 = 𝐶𝑛𝑛−𝑘
o 𝑘−1
𝐶𝑛−1 + 𝐶𝑛−1
𝑘
= 𝐶𝑛𝑘
- Driehoek van Pascal: (tabel 1)
- Binomium van Newton:
o Vb. (a+b)³ = b³ + 3ab² + 3a²b + a³
6.3 De Binomiale verdeling (pg 11)
6.3.1 Bernouilli-experiment (pg 11)
- Bernouilli-experiment = experiment met 2 mogelijke uitkomsten -> bij opnieuw doen van experiment
veranderen kansen niet
o Vb. opgooien muntstuk (kop/munt), geboorte kind (jongen/meisje), gokken bij meerkeuzevraag
(juist/fout)
- p = P(S) = kans op succes
q = 1-p = P(M) = kans op mislukking
o Bernouilli-proces = opeenvolging van Bernouilli-experimenten met zelfde kans p op succes
6.3.2 Binomiale kansverdeling (pg 12)
- X is binomiaal verdeeld met parameters n & p als X aantal successen is in bernouilli-proces bestaande uit n
experimenten met kans op succes p
o Notatie: X ~B(n,p)
o Vb. X = aantal zonen in gezin met 4 kinderen: X ~B(4;1/2)
1
,Eline Opsommer 2e jaar Toegepaste ICT-Apps&Gamification
o Vb. X = aantal slechte producten in steekproef van 20 elementen in productie met 25% uitval:
X~B(20;0,25)
- Formule: X ~B(n,p) -> kans op k successen = P(X=k)=𝐶𝑛𝑘 𝑝𝑘 𝑞 𝑛−𝑘
o Vb. kans op 2 zonen in gezin met 4 kinderen: P(X=2) = 𝐶42 0,52 0,52 = 6x0,25x0,25=37,5%
6.3.3 Tabellen (pg 14)
- Formule: X ~B(n,p) -> kans op k successen = P(X=k)=𝐶𝑛𝑘 𝑝𝑘 𝑞 𝑛−𝑘
- Tabel 2: horizontaal p aflezen & verticaal n & k aflezen
o Vb. kans op 2 zonen in gezin met 4 kinderen: X~B(4,2) = P(X=2) = 0,3750
6.3.4 Voorbeelden (pg 14)
6.3.5 Eigenschappen van de binomiale verdeling (pg 16)
Verwachtingswaarde & standaardafwijking
- X ~B(n,p)
o Verwachtingswaarde E(X)=n.p
o Variantie: Var(X)=n.p.q
o Standaardafwijking: 𝜎 (X)=√𝑛. 𝑝. 𝑞
Vb. X =# keer kop bij 100 worpen met eerlijke munt -> X~B(100;0,5)
E(X) = 100.0,5 = 50
𝜎(X)=√100.0,5.0,5 = 5
P(45 ≤ X ≤ 55) = P(X≤ 55) – P(X≤ 44) = 0,8644 – 0,1356 = 0,7288
Vormeigenschappen
Symmetrische kansverdeling als n groot is of p 0,5 is
2
, Eline Opsommer 2e jaar Toegepaste ICT-Apps&Gamification
6.4 Hypergeometrische verdeling (pg 24)
𝑘 𝑛−𝑘
𝐶𝑀 𝐶𝑁−𝑀
- Notatie: X~H(N,M;n) -> P(X = k) = 𝑛
𝐶𝑁
- Vb. lototrekking met 45 balletjes & je trekt er 6 uit -> kans dat 4 van de 6 balletjes getallen zijn van 0-10?
o X~H(45,10;6)
N = totaal aantal = 45
M = range, speciaal kenmerk = 0-10 = 10
n = aantal dat je gaat trekken = 6
4 𝐶2
𝐶10 35 4
P(X = 4) = 6 = 0,0153 (vb. 𝐶10 = 10 nCr 4)
𝐶45
P(X ≥ 4) = P(X = 4) + P(X = 5) + P(X = 6)
- p = M/N (succes bij 1e trekking)
- Verwachtingswaarde: E(X) = n.p
𝑁−𝑛
- Standaardafwijking: 𝜎 (X)=√𝑛. 𝑝. 𝑞 √
𝑁−1
6.5 De Poissonverdeling (pg 34)
6.5.1 Poissonprocessen (pg 34)
- Limietgeval van binomiale verdeling (bij zeldzame gebeurtenissen)
- Vb. X = # ongevallen op bepaald kruispunt tijdens 1 jaar, drukfouten in boek, oproepen helpdesk
o X~B(n,p) maar n & p zijn meestal onbekend
Verwachtingswaarde E(X) = n.p = λ is wel gekend
- Notatie: X~P(λ)
6.5.2 De Poissonverdeling (pg 36)
𝜆𝑘 𝑒 −𝜆
- Formule: P(X = k) =
𝑘!
o Vb. X~P(4)
46 𝑒 −4
Formule: P(X = 6) = = 0,1041 -> tabel 4: k = 6 & 𝜆 = 4
6!
- Vb. X = # vragen tot schadevergoeding hoger dan 500 EUR
o X~P(1,6) want p = 2/100 & 80 personeelsleden
o Kans dat men voor minstens 4 personeelsleden 500 EUR (of meer) moet betalen?
Tabel 6: P(X ≥ 4) = 0,079
6.5.3 Eigenschappen verwachtingswaarde & standaardafwijking (pg 41)
Verwachtingswaarde & standaardafwijking
- X~P(𝜆)
o Verwachtingswaarde: E(X) = 𝜆
o Variantie: Var(X) = 𝜆 (n.p.q ≈ n.p want p is zeer klein)
o Standaardafwijking: √𝜆
Symmetrische kansverdeling als 𝜆 groot is
3