H2: Statistische modellering 1.1.3. Voor meerdere VA: (bivariate geg) 3.2.1.2. Relatieve goodness of fit Vb 2: absolute goodness of fit
= bepalen vd gezamenlijke kansmassa- of dichth.f = afwegen v relat houdbaarheid v 2 mod tov mekaar
Als T de Pearson-X²stat gebaseerd is op n
JA: Bin (n, 𝜃)
1a) Max likelih schat vd onb parameters uit onafhankelijke observ v ≥ 1 TV waarvan
# successen Max # successen?
NEE: Poisson (𝜆) 1) Algemeen (zelfde vr 𝜑𝑋,𝑌 ): 𝝅𝑿,𝒀 (𝒙, 𝒚) =
𝔐0 (bv 𝜇𝑋 = 𝑥 en 𝜎𝑋 = 𝑠𝑥 ) het gezamenlijk waardenber is opgedeeld
𝝅𝑿|𝒀=𝒚 (𝒙). 𝝅𝒀 (𝒚) = 𝝅𝒀|𝑿=𝒙 (𝒚). 𝝅𝑿 (𝒙) 1b) 𝐿𝔐0 v geg onder 𝔐0 met param= pm uit 1a in I categ en als ∀𝑖: 𝐸𝑖 > 0, (>5!!) dan is:
Discreet: Geo (𝜃) Bv biv norm 2a) 1a mr nu vr meer algemeen mod 𝔐1 𝐥𝐢𝐦 𝝋𝑻 = 𝝋𝝌𝟐
𝒏→∞ (𝒅𝒇=𝑰−𝟏−𝒌)
Wachttijd discreet of
Wachttijd tot 1ste succes
continu
Continu: Expon ( 𝜆) ( not:(𝑋, 𝑌)~𝑁(𝜇1 , 𝜇2 , 𝜎12 , 𝜎22 , 𝜌): 𝜑𝑋,𝑌 (𝑋, 𝑌) = 2b) 1b mr nu vr meer algemeen mod 𝔐1 k= # modelparam die vanuit geg
𝟐 𝒚−𝝁𝟐 𝟐 𝟐𝝆(𝒙−𝝁𝟏 )(𝒚−𝝁𝟐) 3) stat likelihood ratio: LR= 𝑳𝕸𝟎 /𝑳𝕸𝟏 (≤ 1!) geschat werd om 𝐸𝑖 te berekenen
1.1. Eenvoudige modellen 𝟏 −
𝟏
𝟐 [(
𝒙−𝝁𝟏
) +( ) − ]
𝒆 𝟐(𝟏−𝝆 ) 𝝈𝟏 𝝈𝟐 𝝈𝟏 𝝈𝟐
<1: andere mod in 𝔐1 passen beter bij geg dan 𝔐0 = asymptotisch Chi-kwadr verdeeld met
𝟐𝝅𝝈𝟏 𝝈𝟐 (𝟏 − 𝝆𝟐 )
1.1.1. Voor 1 DISCRETE VA (kansmassaf) =1 geen winst bij uitbreiding nr 𝔐1 I-1-k vrijheidsgraden
1. Bernoulli-model (X~Bern(𝜽)) 2) Indien X en Y = stat onafh (zelfde vr 𝜑𝑋,𝑌 ) : 4) stat: -2ln(LR) -> n= groot en 𝐸𝑖 ≥ 5
= TE met 2 mogelijke uitkomsten (0 of 1); 𝝅𝑿,𝒀 (𝒙, 𝒚) = 𝝅𝑿 (𝒙). 𝝅𝒀 (𝒚) -> ln(1)=0 => -2ln(LR) ≈ 0 (geen winst bij 𝔐 ) Nagaan of X² abnorm hoog is? P(X²≥ 𝒙²)
1
Toenemend # df: benaderd meer norm verd
𝜃 = 𝑃(𝑠𝑢𝑐𝑐𝑒𝑠) Bv bivariaat normaal verdeeld: -> 0<x<1: ln(x)<0 => -2ln(LR) >> 0 (wel winst)
Vb3: Relatieve goodness of fit
In 1 exp: X~Bern(θ) met 0< 𝜃 < 1 als: 1 𝑥−𝜇1 2 𝑦−𝜇2 2
Specifieke toetsstatistieken (T) Als rel fit v 2 geneste fam v mod 𝔐0 ⊂
− [( ) +( ) ] 1
𝝅𝑿 (𝟏) = 𝑷(𝑿 = 𝟏) = 𝜽 𝜑𝑋,𝑌 (𝑋, 𝑌) = 𝑒 2 𝜎1 𝜎2 = toetsen specifiek aspect v model (in principe 𝔐1 willen afwegen waarbij
𝝅𝑿 (𝟎) = 𝑷(𝑿 = 𝟎) = 𝟏 − 𝜽 2𝜋𝜎1 𝜎2 gelijk wat als T bv prop mislukkingen na misl) 𝔐1 als parameters (𝜃1,…𝜃𝑘 ) heeft en 𝔐0
𝝁𝑿 = 𝜽 𝒆𝒏 𝝈𝟐𝑿 = 𝜽(𝟏 − 𝜽) -> alles kan uitgebreid w tot VA>2 (multivartiate stat mod) Standaardstatistieken => zie TB! bekomen w dr r parameters v 𝔐1 vast te
n herh v Bern exp (n TV Xi ): X~𝑖𝑖𝑑 𝐵𝑒𝑟𝑛 (𝜃): 1.2. Complexe modellen -> Bivariate geg: toets dat 𝜌𝑥𝑦 = 𝑎
leggen (dwz 𝜃1 = 𝑐1, . . ) dan geldt dat, als
1) Xi ’s allemaal ~Bern(θ) met zelfde waarde vr 𝜃 1. Mengselmodellen
𝔐0 waar is:
(stationariteit) = meerdere deelgroepen waarbij we vr geen enkele ppn weten 𝐥𝐢𝐦 𝝋−𝟐𝒍𝒏(𝑳𝑹) = 𝐥𝐢𝐦 𝝋 𝑳 𝔐 =𝝋 𝟐
2) Alle Xi ’s mutueel stat onafhankelijk tot welke deelgroep die behoort! 𝒏→∞ 𝒏→∞ 0
−𝟐𝒍𝒏(𝑳𝝌 ) (𝒅𝒇=𝒓)
𝔐1
2. Binomiaal-model (Y~Bin(n,𝜽)) Elke deelgr krijgt gewicht afh v grootte (onbekend: 𝜆). H4: Steekproefverdeling (SV) v statistieken -> -2ln(LR) = asymptotisch Chi-kwadr verd
Y = totaal # successen in reeks n herh Bern exp Proporties vd 2 deelgr: (𝝀′ + 𝝀 = 𝟏) = 𝜋 𝑜𝑓 𝜑 van statisiek (geg steekproefgrootte n) 4.1.3. Simulatiemethode (param bootstrap)
Bereik v Y: {0,1,2, … 𝑛} (bv familie v norm mod = deelfamilie v mengselmod v Vaak nodig om statistisch model te postuleren vr TV X = trekken v SP uit modellen na bootsen
Y~Bin(n,𝜃) met n ∈ ℕ, 𝑛 ≥ 1; 𝜃 ∈ ]0,1[ als: 2 norm verd deelgr) bv X~𝝀𝑁(𝜇1 , 𝜎12 )+(1- 𝝀)𝑁(𝜇2 , 𝜎22 ) SD v SV = standaardfout 1) trekken v SP met omvang n bv
𝒏 (𝟏) (𝟐)
𝝅𝒀 (𝒌) = 𝑷(𝒀 = 𝒌) = ( ) 𝜽𝒌 (𝟏 − 𝜽)𝒏−𝒌 1) Algemeen: 𝝅𝑿 = 𝝀𝝅𝑿 + (𝟏 − 𝝀)𝝅𝑿 4.1. Methoden X~Bern(0.70) -> RAND (0 =
𝒌
𝝁𝒀 = 𝒏𝜽 𝒆𝒏 𝝈𝟐𝒀 = 𝒏(𝜽)(𝟏 − 𝜽) 2) Meer dan 2 componentmodellen: 4.1.1. Enumeratieve methode (exact!) getallen tss 0 en 0,30 en 1= 0.30-1)
(𝟏) (𝟐) (𝟑)
! Bern(𝜃) = 𝐵𝑖𝑛(1, 𝜃) 𝝅𝑿 = 𝝀𝟏 𝝅𝑿 + 𝝀𝟐 𝝅𝑿 + (𝟏 − 𝝀𝟏 − 𝝀𝟐 )𝝅𝑿 = alle mogelijke SV v omvang n noteren en dan 2) simuleren v steekproefverdeling v
𝜋functie vr proportie Y/n (n herh v Bern exp): 3) Multivariaat: 𝝋𝑿,𝒀 = 𝝀𝟏 𝝋𝑿,𝒀 (𝟏) + 𝝀𝟐 𝝋𝑿,𝒀(𝟐) + 𝜋functie vd statistiek T te bepalen (= SV v T) stat-> vr groot # gesimul SP waarde
𝒀 𝟏 𝟏 𝜽(𝟏−𝜽) (𝟏 − 𝝀𝟏 −𝝀𝟐 )𝝋𝑿,𝒀 (𝟑) v stat berekenen -> propfunc v
𝝁𝒀 = 𝚬 [ ] = 𝚬[𝒀] = 𝜽 𝒆𝒏 𝝈𝟐𝒀 = 𝝈𝟐𝒀 = => methode gaat alleen als grootte v
𝒏 𝒏 𝒏 𝒏
𝒏² 𝒏
2. Regressiemodellen onderzochte pop (N) en die v stat-waarden berekenen
(sd in %)
Yi’s stat onafh mr niet identiek verdeeld; Yi= mate v.. Opm: als param onbekend -> 1st schatten
3. Geometrisch model (Z~Geo(𝜽)) bestudeerde sp (n) klein zijn Bv X~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(4): kijken in TB nr πX -> ΦX
𝜷𝟏 = effect/wat gebeurt met Y als x 1eh toeneemt
= # beurten tot 1ste succes; 𝜃 = 𝑃(𝑠𝑢𝑐𝑐𝑒𝑠), Z= LET OP: met/zonder terugleggen (ZTW = met)
(gevoeligheid vr x) 4.2. Vben v SPverdeling
volgnr vd dag vh 1ste succes 𝜷𝟎 = gemiddelde Y bij x=0 (basisniveau v Y) ongeordend of geordend Zie TB p1-4
Z~Geo(θ) met 0< 𝜃 < 1 als:
𝝅𝒁 (𝒌) = 𝑷(𝒁 = 𝒌) = (𝟏 − 𝜽)𝒌−𝟏 𝜽 (k=1,2,3,…)
𝝈= in welke mate Y fluctueert tgv toevalsfactoren (los v x) p1= 𝑋̅ (aannames maken vr SP!)
𝟐
𝟏 𝒚−(𝜷𝟎 +𝜷𝟏 𝒙𝒋 )
𝟏 (𝟏 − 𝜽) 𝟏 − 𝟐( ) p2 = 2 SP bv mannen en vrouwen
𝝁𝒁 = 𝒆𝒏 𝝈𝟐𝒁 = 1) Enkelvoudig: 𝝋𝒀|𝑿=𝒙𝒋 (𝒚) = 𝒆 𝝈
𝜽 𝜽² √𝟐𝝅𝝈 (meestal verondersteld dat Xi=iid en Yi =iid)
ste
stel: W= aantal dagen VR 1 /duur: = (1 − 𝜃)𝑘 𝜃
OF 𝐘|𝑿=𝒙𝒋 ~𝑵(𝜷𝟎 + 𝜷𝟏 𝒙𝒋 , 𝝈² ) -> afh is geval waarin nX = nY =n en de elem
4. Poisson-model (X~𝑷𝒐𝒊𝒔𝒔𝒐𝒏(𝝀)) 4.1.2. Deductieve methode (adhv wiskundige afleiding) vd 2SP paarsgewijs geassocieerd zijn & knn
= # successen in een bep interval/tijdspanne OF 𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 + 𝑬𝒊 𝒎𝒆𝒕 𝑬𝒊 ~𝒊𝒊𝒅𝑵(𝟎, 𝝈² )
4.1.2.1. Exacte beschrijving v de gezochte SV paarsgewijs afh zijn (dwz X1 is geass met Y1,…)
𝜆 = verw # succ. in 1 eenheid v tijd/ruimte (= n𝜃) 2) Meervoudig: 𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝟏𝒊 + 𝜷𝟐 𝒙𝟐𝒊 + p3 = 𝑆𝑋2 (SPverd v functie v deze stat)
X~Poisson(λ) met λ > 0 als: 1) Stel dat 𝑋 = het SPgemiddelde ve SP
𝑬𝒊 𝒎𝒆𝒕 𝑬𝒊 ~𝒊𝒊𝒅 𝑵(𝟎, 𝝈𝟐 ) 𝒏𝑺𝟐 𝒏𝒂
𝒌
𝝀 −𝝀 met omvang n, op ZTW (MTL), dan: 𝚽 𝑺𝟐𝑿 (𝒂) = 𝑷( 𝑺𝟐𝑿 ≤ 𝒂) = 𝑷 ( 𝟐𝑿 ≤ 𝟐 )
-
𝝅𝑿 (𝒌) = 𝑷(𝑿 = 𝒌) = 𝒆 𝝈 𝝈 𝒙 𝒙
𝒌! 3) Hiërarchisch: Individuele versch bv in frustr. gevoel.: 𝟐
𝝁𝑿 = 𝝀 𝒆𝒏 𝝈𝟐𝒙 =𝝀 𝟐)
̅ ] = 𝝁𝑿 en 𝝈𝟐 = 𝝈𝑿
𝚬[ 𝑿 p3=verhoud vd var ve meting in 2 onafh SP
𝒀𝒊𝒌 = 𝜷𝟎 + 𝜷𝟏𝒌 𝒙𝒊 + 𝑬𝒊𝒌 𝒎𝒆𝒕 𝜷𝒊𝒌 ~𝑵(𝝁, 𝝉 𝑿 𝒏
Wnnr model gebruiken?
-> 2 types: hoog/laag frustr gev: -> ! stelling gaat op vr elke waarde v n en vr elke -> F-verdeling (TB)
1) voorkomen ve geb ie continu medium 𝜋 𝑜𝑓 𝜑 functie) p4 = functies v rXY -> Fisher-z transformatie (Fz)
𝜷𝒊𝒌 ~𝝀𝑵(𝝁𝟏 , 𝝉𝟐 ) + (𝟏 − 𝝀)𝑵(𝝁𝟐 , 𝝉𝟐 )
(tijd, ruimte,..) waarbij: !!stelling gaat ook op vr SPtrekking ZTL als N = ∞ -> zet r om ie grootheid tss -∞ en +∞ en
− voorkomen v geb in stukje medium = stat -> interactie:𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝟏𝒊 + 𝜷𝟐 𝒙𝟐𝒊 + 𝜷𝟑 𝒙𝟏𝒊 𝒙𝟐𝒊 + 𝑬𝒊
onder bep vw norm verdeeld is (zie TB)
onafh v voorkomen v geb in elk ander, Vb: Yij = β0 + β1jxi + Eij met β1j = β0* + β1* wj + Ej* (Eij ∼ 2) Stel dat 𝑋 = het SPgemid ve SP met
-> trans = ordebewarend (bv r1<r2 dan FZ1<FZ2)
niet-overlappend stukje medium N(0, σ² ) en Ej*∼ N(0, τ ² )) β0*= basisniv v effect, β1* = omvang n, ZTL uit pop met omvang N en
− mate waarin geb binnen stukje medium invloed v .. op effect β1j elke mogelijke SP n even veel kans heeft H5: Parameterschatting
voorkomt proportioneel is met grootte v H3: Keuze v statistieken om getrokken te w, dan geldt: 5.1. Puntschatting
stukje medium (in bep tijdspanne 𝜆 keer, Bv max, Pc50, autocorr=𝑟𝑋𝑖 𝑋𝑖+1 (toetsen v afh) 𝟐 = 1 zo goed mogelijke waarde nr vr
in r* grotere tijdspanne = r* 𝝀) 3.1. Keuze v schatters ̅ ] = 𝝁𝑿 en 𝝈𝟐 = 𝝈𝑿 . (𝑵−𝒏)
𝚬[ 𝑿 schuiven vr de te schatten parameter
𝑿 𝒏 𝑵−𝟏
2) als benadering v Bin(n,𝜃) met n zeer Stat met doel schatten parameter = schatter (𝜃̂ ) Kwaliteitscriteria vd schatter:
𝝈𝟐𝑿
groot en 𝜃 zeer klein 3.1.1.Analogiemethode -> als N zeer groot is tov n: 𝝈𝟐𝑿 ≈ 1) Schatter levert gemid genomen (over
= model param schatten dr equivalent te zoeken op 𝒏
1.1.2. Voor 1 CONTINUE VA alle SP met grootte n) juiste schatter op:
SPniveau bv 𝑋 is analoge schat vr 𝜇𝑋 : 3) volledige verdeling: 𝑋~𝑁(𝜇𝑋 , 𝜎𝑋2 ) dan:
-> dichheidsf (geen kansen, opp = kans) 𝝈𝟐𝑿 a) Punschatter 𝜽 ̂ 𝒗 𝜽 heet zuiver als
1. Uniform model (X~𝑼(𝒂, 𝒃)) 𝜇𝑋 = ∑ 𝑥𝑗 ∗ 𝜋¨𝑥𝑗 → 𝑋 = ∑ 𝑥𝑗 ∗ 𝑝(𝑥𝑗 ) 𝑿 ~𝑵 (𝝁𝑿 , 𝒏
) ̂ ] = 𝜽 (bv Ε[ 𝑋̅] = 𝜇𝑋 en gn
𝚬[ 𝜽
= “op toeval getal tss a en b” zuiver: Ε[𝑆𝑋2𝑛 ] =
𝑛−1
𝜎𝑥2 )
(bv 𝑋 vr 𝜇𝑋 , 𝑆𝑋2 vr 𝜎𝑥2 , 𝑟𝑥𝑦 vr 𝜌𝑥𝑦 ) -> stelling geldt vr alle waarden v n
X~𝑈(𝑎, 𝑏) op [𝑎, 𝑏] met a,b ℝ en a<b als: 𝑛
𝟏 3.1.2. Kleinste kwadratenmethode -> geldt enkel altijd als X norm verd is. Bij ̂𝟏, 𝜽
b) Familie puntschatters v 𝜽, (𝜽 ̂ 𝟐 , … ),
𝝋𝑿 (𝑿) = {𝒃 − 𝒂 𝒗𝒐𝒐𝒓 𝒂 ≤ 𝒙 ≤ 𝒃 = optim lineaire voorspelling uitvoeren op biv. SPgeg andere mod is 𝑋 enkel norm v als n groot is heet asymptotisch zuiver als
𝒔𝒚
𝟎 𝑨𝒏𝒅𝒆𝒓𝒔 𝒚𝒆𝒔𝒕
𝒊 = 𝒃𝟎 + 𝒃𝟏 𝒙𝒊 => 𝒃𝟏 = 𝒓𝒙𝒚 -> beperking: SV v 𝑋 hangt mee af v (meestal ̂𝒏 ] = 𝜽
𝐥𝐢𝐦 𝚬[𝜽
𝒂+𝒃 (𝒂 − 𝒃)² 𝒔𝒙
𝝁𝑿 = 𝒆𝒏 𝝈𝟐𝒙 = 𝒔𝒚 onbekende) 𝜎𝑋 𝒏→∞
𝟐 𝟏𝟐 𝒃𝟎 = 𝒚 ̅ − 𝒃𝟏 𝒙
̅=𝒚 ̅ − 𝒓𝒙𝒚 𝒙 ̅ (bv lim Ε[𝑆𝑋2𝑛 ] = lim (
𝑛−1
𝜎𝑥2 ) = 𝜎𝑋2 )
𝒔𝒙 4) beperking omzeilen: ipv 𝑋 Student-
Als X~𝑈(𝑎, 𝑏) 𝑒𝑛 [𝑐, 𝑑] ⊂ [𝑎, 𝑏] dan: P(c≤ ̂ ̂𝟏 = 𝒃𝟏 (= kleinste kwadratenschatters)
𝑛→∞ 𝑛→∞ 𝑛
𝒅−𝒄 𝜷𝟎 = 𝒃𝟎 , 𝜷 verdeling (als X~𝑁(𝜇, 𝜎² ); t-verdeling; 𝑇𝑋 ; 2) Gemid gezien niet te ver afwijken
𝑿 ≤ 𝒅) = => minimaliseren v gekwad st.fout v estimatie:
𝒃−𝒂 met n-1 vrijheidsgraden) gebruiken: vh doel: Gemid gekwadr fout:
2. Normaalmodel (X~𝑵(𝝁, 𝝈² )) 1
2
𝑠𝑦.𝑥 = ∑(𝑦𝑖𝑒𝑠𝑡 − 𝑦𝑖 )2 𝑿 − 𝝁𝑿
X~𝑁(𝜇, 𝜎² ) met 𝜇 𝑒𝑛 𝜎, 𝜎 > 0 als: 𝑛 𝑻 𝑿 =
𝑺′ 𝚬[(𝜽̂ − 𝜽)²] =𝝈𝟐̂ + (𝚬[𝜽
̂ ] − 𝜽)²
𝑖 𝑿 𝜽
𝟏 𝒙−𝝁 𝟐 3.1.3. Maximum likelihood methode √𝒏 2
𝝋𝑿 (𝒙) =
𝟏
𝒆
− ( )
x∈ ℝ (als Ε[𝜃̂ ]= 𝜃 dan: Ε[(𝜃̂ − 𝜃)²] =𝜎𝜃
̂)
𝟐 𝝈 L= na observatie, aannemelijkheid v obs (obs heeft -> df = ∞ => =standaardnormaalverdeling
√𝟐𝝅.𝝈 ̂ = zuivere schatter v 𝜽 met uniform
𝝁𝑿 = 𝝁 𝒆𝒏 𝝈𝟐𝒙 = 𝝈² % kans om voor te komen) -> gebas op 𝜋/𝜑 4.1.2.2. Benaderende beschrijving (n= groot!!!) a) 𝜽
Standaardnormaalmodel: X~𝑁(0,1) 𝜆 ongekend? Waarde v 𝜆 waarvoor L(X=..|𝜆=?) Vb 1: Centrale limiet-stelling minimale variantie als voor alle
Als X~𝑁(𝜇, 𝜎² ) en Y=aX+b dan: het grootst is (bv stat onafh L(X=4 en X=2| 𝜆 = 2) = = stel dat vr elke waarde v n 𝑋1 , … , 𝑋𝑛 iid TV zijn mogelijke waarden v 𝜽 geldt:
Y~𝑵(𝒂𝝁 + 𝒃, 𝒂²𝝈²)
𝜆4
𝑒 −𝜆
𝜆2
𝑒 −𝜆 ) met verwachte waarde 𝜇𝑋 en variantie 𝜎𝑥2 en (1) 𝜽̂ zuiver is
4! 2!
1 𝑋̅𝑛 − 𝜇𝑋
3. Exponentieel model (T~𝑬𝒙𝒑𝒐𝒏(𝝀 ) Ln-likelihood: ln(L(…)) (bij kleine waarde v L) 𝑋̅ = ∑𝑖 𝑋𝑖 en 𝜁̅̅̅̅
𝑋𝑛 = 𝜎𝑋 dan geldt: (2) Vr elke andere zuivere schatter
𝑛
+
Tijdspanne v t (∈ ℝ ) teenheden; X = aantal binnen t
3.2. Keuze v toetsstatistieken √𝑛 ̂∗ v 𝜽 geldt:
𝜽
(𝝀𝒕)𝒌 3.2.1.Algemene goodness-of-fit 𝐥𝐢𝐦 𝝓𝜻̅̅̅̅ = 𝝓𝑵(𝟎,𝟏)
tijdsp: Xt~Poisson(λt) en P(Xt= k)= = 𝒆−𝝀𝒕 𝒏→∞ 𝑿 𝒏
𝚬[(𝜽̂ − 𝜽)²] ≤ 𝚬 [(𝜽 ̂ ∗ − 𝜽)²]
𝒌! 3.2.1.1. Absolute goodness of fit
T = # tijdseenheden tot succes (zelfde vw als Pois) Dus bij grote waarden v n (benaderend):
= 1 model op zich nagaan ̅ 𝑛− 𝜇 Bv als X~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) -> 𝑋 =UMVUE vr λ
−𝝀𝒕 𝑋 𝑋 ̅ 𝒏 ~𝑵 (𝝁𝑿 , 𝝈²𝑿 )
~𝑁(0,1) en 𝑿
𝝋𝑻 (𝒕) = { 𝝀𝒆 𝒕≥𝟎 1) Partities v waardengeb (categorie I) 𝜻̅̅̅̅
𝑿 = 𝒏 𝜎𝑋
𝒏 3) Gemid gekwad fout neemt af als
𝟎 𝒕<𝟎 √𝑛
2) geobs freq (O𝑖 )
𝟏
!!! 𝝁𝑻 = 𝝀 𝒆𝒏 𝝈𝟐𝑻 = 𝝀𝟐
𝟏
=> 𝑋̅𝑛 = asymptotisch normaal verdeeld SPgrootte toeneemt
3) P= kans v X obv v model
t
T > t als X =0: 4) 𝐸𝑖 = verwachte frequentie = P.n
(geldt vr alle verdelingen v X) a) Familie puntschatters v 𝜽, (𝜽̂𝟏 , 𝜽̂𝟐 , … ),
𝚽𝑻 (𝒕) = 𝑷(𝑻 ≤ 𝒕) = 1 − 𝑃(𝑇 > 𝑡) (O𝑖 −𝐸𝑖 )²
Bv als X1,.., Xn~𝑖𝑖𝑑 𝐵𝑒𝑟𝑛 (𝜃), asymptotisch
5) 𝑋 2 = ∑𝐼𝑖=1 (Pears. Chi kwadr stat) (hoe geldt: 𝑋̅𝑛 ~𝑁 ( 𝜃,
𝜃(1−𝜃) heet consistent als
= 1 − 𝑃 (𝑋 𝑡 = 0) = 𝟏 − 𝒆−𝝀𝒕 !! 𝐸𝑖 𝑛
)
𝐥𝐢𝐦 𝚬[(𝜽̂ − 𝜽)²] = 𝟎
groter, hoe slechter) 𝒏
𝒏→∞