Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting Business Intelligence €4,48   Ajouter au panier

Resume

Samenvatting Business Intelligence

 111 vues  2 fois vendu

Samenvatting van het handboek in combinatie met de slides. Ik was erdoor in eerste zit

Aperçu 3 sur 29  pages

  • Oui
  • 17 mai 2021
  • 29
  • 2019/2020
  • Resume
book image

Titre de l’ouvrage:

Auteur(s):

  • Édition:
  • ISBN:
  • Édition:
Tous les documents sur ce sujet (10)
avatar-seller
windeserwy
Business intelligence
Chapter 1: Data-analytic thinking
The omnipresence of data opportunities
Companies in almost every industry are focused on gaining data for
competitive advantage
Everything in the past was manually, nowadays computers have become
more powerful, networking has become ubiquitous and algorithms have
developed
 Probably the widest applications of data-mining techniques are in
marketing

Data science= a set of fundamental principles that guide the extraction
of knowledge from data
Data mining= the extraction of knowledge from data

Data science, engineering and data-driven decision making
Data science involves principles, processes and techniques for
understanding phenomena via the analysis of data
Ultimate goal: improve decision making

Data-driven decision-making (DDD); refers to basing decisions on the
analysis of data
Research showed that statistically, the more data-driven a firm is, the
more productive it is
Sort of decisions in this book:
- Decisions for which ‘discoveries’ need to be made within data
- Decisions that repeat (especially at massive scale)

Data processing and ‘Big data’
Data engineering and processing are critical to support data science, but
they are more general
 the big difference is that they support data science

Data processing technologies= very important for many data-oriented
business tasks that do not involve extracting knowledge or data-driven
decision-making
Big data= datasets that are too large for traditional data processing
systems
 often require new technologies, they are being used for many tasks

From Big data 1.0 to Big Data 2.0
First we had Web 1.0, businesses were busy getting basic internet
technologies in place
Together with Web 1.0 we had Big Data 1.0, firms are building the
capabilities to process large data
In Web 2.0 there were new systems and companies began taking
advantage of the interactive nature of the web
Together with Web 2.0 Big Data 2.0 follows, firms became capable of
processing massive data in a flexible fashion

,Data and data science capability as a Strategic Asset
Data and the capability to extract useful knowledge from data, should be
regarded as key strategic assets
Often we don’t have exactly the right data to make the best decisions
and/ or the right talent to best support making decisions from the data
 the right data often cannot substantially improve decisions without
suitable data science talent, this needs investment!

Studies giving clear quantitative demonstrations of the value of a data
asset are hard to find, primarily because firms are hesitant to divulge
results of strategic value
Exception: study by Martens and Provost (onderzoek naar of een
transactie het aangeboden offer kan beïnvloeden)
The idea of data as a strategic asset is certainly not limited

Data- analytic thinking
When faced with a business problem, you should be able to assess
whether and how data can improve performance
Firms in many traditional industries are exploiting new and existing data
resources for competitive advantage
Data analytics projects reach into all business units, employees
throughout these units must interact with the data science team

, Chapter 2: Business problems and Data Science solutions
Data mining is a process with fairly well-understood stages
Some involve application of information technology, others require an
analyst’s creativity

From business problems to Data Mining Tasks
Each problem is unique, but there are sets of common tasks that underlie
the business problems
A business problem is divided in subtasks, some are unique, some are
common data mining tasks
1) Classifications and class probability estimation
Attempt to predict, for each individual in a population, which of a set
of classes this individual belongs to
 Classes are mutually exclusive
For a classification task, a data mining procedure produces a model
that, given a new individual, determines which class that individual
belongs to
 Classification and scoring are very closely related

2) Regression (value estimation)
Attempts to estimate or predict, for each individual the numerical
value of some variable for that individual
A regression procedure produces a model that, given an individual,
estimates the value of the particular variable specific to the
individual
Regression is related to classification, but the two are different

3) Similarity matching
Attempts to identify similar individuals based on data known about
them
Can be used directly to find similar entities and is the basis for one
of the most popular methods for making product recommendations

4) Clustering
Attempts to group individuals in a population together by their
similarity, not for any specific purpose
Clustering is useful in preliminary domain exploration to see which
natural groups exist because these groups in turn may suggest
other data mining tasks or approaches

5) Co-occurrence grouping
Attempts to find associations between entities based on
transactions involving them
Co-occurrence grouping considers similarity of objects based on
their appearing together in transactions
Result: description of items that occur together

6) Profiling

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur windeserwy. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €4,48. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

80796 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€4,48  2x  vendu
  • (0)
  Ajouter