SOLUTION MANUAL
Finite Mathematics & Its Applications
13th Edition by Goldstein Chapters 1 - 12
, Contents
Chapter 1: Linear Equations and Straight Lines
K K K K K 1–1
Chapter 2: Matrices
K 2–1
Chapter 3: Linear Programming, A Geometric Approach
K K K K K 3–1
Chapter 4: The Simplex Method
K K K 4–1
Chapter 5: Sets and Counting
K K K 5–1
Chapter 6: Probability
K 6–1
Chapter 7: Probability and Statistics
K K K 7–1
Chapter 8: Markov Processes
K K 8–1
Chapter 9: The Theory of Games
K K K K 9–1
Chapter 10: The Mathematics of Finance
K K K K 10–1
Chapter 11: Logic
K 11–1
Chapter 12: Difference Equations and Mathematical Models
K K K K K 12–1
, Chapter 1 K
ExercisesK1.1 5
6.K LeftK1,KdownK
2
1. RightK2,KupK3 y
y
(2,K3
) x
x
(–1,K – 2
K5K)
7.K LeftK20,KupK40
2. LeftK1,KupK4 y
y
(–20,K40)
(–1,K4)
x
x
8.K RightK25,KupK30
3.K DownK2 y
y
(25,K30)
x
x
(0,K–2)
9. PointKQKisK2KunitsKtoKtheKleftKandK2KunitsKupKor
4. RightK2
y (—2,K2).
10. PointKPKisK3KunitsKtoKtheKrightKandK2KunitsKdownKor
(3,—2).
x
(2,K0 1K
) 11. —2(1)K+K (3)K=K—2K+1K=K—1soK yesK theK pointK is
3
onKtheKline.
5. LeftK2,KupK1 1K
y 12. —2(2)K+K (6)K=K—1KisK false,K soK noK theK pointK isK not
3
onKtheKline
(–2,K1)
x
CopyrightK©K2023KPearsonKEducation,KIn 1-1
c.
, ChapterK1:KLinearKEquationsKandKStraightKLin ISM:KFiniteKMat
es h
1K 24.K 0K=K5
13. —2xK+K yK =K—1K SubstituteK theK xK andK y noKsolution
3 x-
coordinatesKofKtheKpointKintoKtheKequation: intercept:KnoneKW
f 1K ıhK f h
' ,K3 →K—2 ' 1 ı +K1K(3)K=K—1K→K—1+1K=K—1K is henKxK=K0,KyK=K5Ky
y' ı -intercept:K(0,K5)
Jı
2KKK'K yK2J 3
aKfalseKstatement.KSoKnoKtheKpointKisKnotKonKtheKl 25.KWhenKyK=K0,KxK=K
ine. 7Kx-
f 1 h f1h intercept:K(7,K0)K0K
14. —2 ' ı + ' ı(—1)K=K—1K isKtrueKsoKyesKtheKpointKis =K7
noKsolution
'y3 ıJKKK'y3 ıJ y-intercept:Knone
onKtheKline. 26.K 0K=K–8x
15.K mK=K5,KbK=K8 xK=K0
x-intercept:K(0,K0)
16.K mK=K–2KandKbK=K–6 yK=K–8(0)
yK=K0
17.K yK=K0xK+K3;KmK=K0,KbK= y-intercept:K(0,K0)
K3
2K 2K 1K
18. yK=K xK+K0;K mK=K ,K bK=K0 27. 0K=K xK –K1
3 3 3
xK=K3
19.K 14xK+K7KyK=K21 x-intercept:K(3,K0)
1K
7KyK =K—14xK+K21 yK =K (0)K–K1
3
yK =K—2xK+K3 yK=K–1
y-intercept:K(0,K–1)
20. xK—KyK=K3 y
—yK=K—xK+K3
yK=KxK—K3
(3,K0)
21.KKK 3xK=K5 x
5 (0,K–1)
xK=K
3
1 2 28. WhenKxK=K0,KyK=K0.
22. – 2 xK+ 3 yK =K10 WhenKxK=K1,KyK=K2.
2K 1K y
yK =K xK+10
3 2
3K
yK =K xK+15 (1,K2)
4 x
(0,K0)
23. 0K=K—4xK+K8
4xK =K8
xK =K2
x-intercept:K(2,K0)
yK=K–4(0)K+K8
yK=K8
y-intercept:K(0,K8)
1-2 CopyrightK©K2023KPearsonKEducation,KIn
c.