100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Summary Harmonic Analysis A Comprehensive Course in Analysis, Part 3 Barry Simon $14.99   Add to cart

Summary

Summary Harmonic Analysis A Comprehensive Course in Analysis, Part 3 Barry Simon

 3 views  0 purchase

Reed–Simon2 starts with “Mathematics has its roots in numerology, geometry, and physics.” This puts into context the division of mathematics into algebra, geometry/topology, and analysis. There are, of course, other areas of mathematics, and a division between parts of mathematics can be a...

[Show more]

Preview 10 out of 779  pages

  • October 25, 2024
  • 779
  • 2024/2025
  • Summary
All documents for this subject (1)
avatar-seller
Exammate
Harmonic Analysis
A Comprehensive Course in Analysis, Part 3




Barry Simon

,Harmonic Analysis
A Comprehensive Course in Analysis, Part 3

,
, http://dx.doi.org/10.1090/simon/003




Harmonic Analysis
A Comprehensive Course in Analysis, Part 3



Barry Simon




Providence, Rhode Island

, 2010 Mathematics Subject Classification. Primary 26-01, 31-01, 46-01;
Secondary 30H10, 30H35, 42C40, 42B20, 46E35.




For additional information and updates on this book, visit
www.ams.org/bookpages/simon




Library of Congress Cataloging-in-Publication Data
Simon, Barry, 1946–
Harmonic analysis / Barry Simon.
pages cm. — (A comprehensive course in analysis ; part 3)
Includes bibliographical references and indexes.
ISBN 978-1-4704-1102-2 (alk. paper)
1. Mathematical analysis—Textbooks. 2. Harmonic analysis—Textbooks. I. Title.

QA300.S5275 2015
515.2433—dc23
2015024457




Copying and reprinting. Individual readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material, such as to copy select pages for
use in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.
Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Permissions to reuse
portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink
service. For more information, please visit: http://www.ams.org/rightslink.
Send requests for translation rights and licensed reprints to reprint-permission@ams.org.
Excluded from these provisions is material for which the author holds copyright. In such cases,
requests for permission to reuse or reprint material should be addressed directly to the author(s).
Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the
first page of each article within proceedings volumes.


c 2015 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.

∞ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
10 9 8 7 6 5 4 3 2 1 20 19 18 17 16 15

, To the memory of Cherie Galvez

extraordinary secretary, talented helper, caring person



and to the memory of my mentors,
Ed Nelson (1932-2014) and Arthur Wightman (1922-2013)

who not only taught me Mathematics
but taught me how to be a mathematician

,
,Contents


Preface to the Series xi
Preface to Part 3 xvii
Chapter 1. Preliminaries 1
§1.1. Notation and Terminology 1
§1.2. Some Results for Real Analysis 3
§1.3. Some Results from Complex Analysis 12
§1.4. Green’s Theorem 16
Chapter 2. Pointwise Convergence Almost Everywhere 19
§2.1. The Magic of Maximal Functions 22
§2.2. Distribution Functions, Weak-L1 , and Interpolation 26
§2.3. The Hardy–Littlewood Maximal Inequality 41
§2.4. Differentiation and Convolution 52
§2.5. Comparison of Measures 60
§2.6. The Maximal and Birkhoff Ergodic Theorems 65
§2.7. Applications of the Ergodic Theorems 92
§2.8. Bonus Section: More Applications of the Ergodic
Theorems 102
§2.9. Bonus Section: Subadditive Ergodic Theorem and
Lyapunov Behavior 133
§2.10. Martingale Inequalities and Convergence 147
§2.11. The Christ–Kiselev Maximal Inequality and Pointwise
Convergence of Fourier Transforms 168

vii

,viii Contents


Chapter 3. Harmonic and Subharmonic Functions 173
§3.1. Harmonic Functions 177
§3.2. Subharmonic Functions 202
§3.3. Bonus Section: The Eremenko–Sodin Proof of Picard’s
Theorem 213
§3.4. Perron’s Method, Barriers, and Solution of the Dirichlet
Problem 220
§3.5. Spherical Harmonics 232
§3.6. Potential Theory 252
§3.7. Bonus Section: Polynomials and Potential Theory 278
§3.8. Harmonic Function Theory of Riemann Surfaces 298
Chapter 4. Bonus Chapter: Phase Space Analysis 319
§4.1. The Uncertainty Principle 320
§4.2. The Wavefront Sets and Products of Distributions 345
§4.3. Microlocal Analysis: A First Glimpse 352
§4.4. Coherent States 373
§4.5. Gabor Lattices 390
§4.6. Wavelets 407
Chapter 5. H p Spaces and Boundary Values of Analytic Functions
on the Unit Disk 437
§5.1. Basic Properties of Hp 439
§5.2. H2 444
§5.3. First Factorization (Riesz) and Hp 450
§5.4. Carathéodory Functions, h1 , and the Herglotz
Representation 459
§5.5. Boundary Value Measures 464
§5.6. Second Factorization (Inner and Outer Functions) 468
§5.7. Conjugate Functions and M. Riesz’s Theorem 472
§5.8. Homogeneous Spaces and Convergence of Fourier Series 493
§5.9. Boundary Values of Analytic Functions in the Upper
Half-Plane 498
§5.10. Beurling’s Theorem 515
§5.11. H p -Duality and BMO 517
§5.12. Cotlar’s Theorem on Ergodic Hilbert Transforms 539

, Contents ix


Chapter 6. Bonus Chapter: More Inequalities 543
§6.1. Lorentz Spaces and Real Interpolation 547
§6.2. Hardy-Littlewood–Sobolev and Stein–Weiss Inequalities 559
§6.3. Sobolev Spaces; Sobolev and Rellich–Kondrachov
Embedding Theorems 565
§6.4. The Calderón–Zygmund Method 588
§6.5. Pseudodifferential Operators on Sobolev Spaces and the
Calderón–Vaillancourt Theorem 604
§6.6. Hypercontractivity and Logarithmic Sobolev Inequalities 615
§6.7. Lieb–Thirring and Cwikel–Lieb–Rosenblum Inequalities 657
§6.8. Restriction to Submanifolds 671
§6.9. Tauberian Theorems 686
Bibliography 691
Symbol Index 737
Subject Index 739
Author Index 751
Index of Capsule Biographies 759

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller Exammate. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $14.99. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

83225 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$14.99
  • (0)
  Add to cart