Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto
Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo
,
R
U
SE
IS
O
N
N
O
The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation
C
contained in this book. The author and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these programs.
ED
Reproduced by Pearson from electronic files supplied by the author.
Publishing as Pearson, 75 Arlington Street, Boston, MA 02116.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America.
U
1.1 Lines and Linear Functions ......................................................................................................... 28
1.2 The Least Squares Line ............................................................................................................... 39
SE
1.3 Properties of Functions ................................................................................................................ 46
1.4 Quadratic Functions; Translation and Reflection ........................................................................ 54
1.5 Polynomial and Rational Functions............................................................................................. 66
IS
Chapter 1 Review Exercises ..................................................................................................................
Extended Application: Using Extrapolation to Predict Life Expectancy...............................................
CHAPTER 2 EXPONENTIAL, LOGARITHMIC, AND TRIGONOMETRIC FUNCTIONS
76
88
O
2.1 Exponential Functions ................................................................................................................. 89
N
2.2 Logarithmic Functions................................................................................................................. 99
2.3 Applications: Growth and Decay................................................................................................. 109
N
Extended Application: Power Functions ............................................................................................... 133
CHAPTER 3 THE DERIVATIVE
C
3.1 Limits........................................................................................................................................... 134
ED
3.2 Continuity .................................................................................................................................... 145
3.3 Rates of Change........................................................................................................................... 152
3.4 Definition of the Derivative......................................................................................................... 163
3.5 Graphical Differentiation............................................................................................................. 178
M
Chapter 3 Review Exercises .................................................................................................................. 182
Extended Application: A Model for Drugs Administered Intravenously .............................................. 194
, CHAPTER 4 CALCULATING THE DERIVATIVE
4.1 Techniques for Finding Derivatives ............................................................................................ 196
4.2 Derivatives of Products and Quotients ........................................................................................ 205
4.3 The Chain Rule............................................................................................................................ 212
4.4 Derivatives of Exponential Functions ......................................................................................... 221
4.5 Derivatives of Logarithmic Functions ......................................................................................... 239
4.6 Derivatives of Trigonometric Functions...................................................................................... 248
Chapter 4 Review Exercises .................................................................................................................. 253
Extended Application: Managing Renewable Resources ...................................................................... 263
CHAPTER 5 GRAPHS AND THE DERIVATIVE
5.1 Increasing and Decreasing Functions .......................................................................................... 265
R
5.2 Relative Extrema ......................................................................................................................... 278
U
5.3 Higher Derivatives, Concavity, and the Second Derivative Test ................................................ 293
5.4 Curve Sketching .......................................................................................................................... 316
SE
Chapter 5 Review Exercises .................................................................................................................. 336
Extended Application: A Drug Concentration Model for Orally Administered Medications ............... 360
CHAPTER 6 APPLICATIONS OF THE DERIVATIVE
IS
6.1 Absolute Extrema ........................................................................................................................
6.2 Applications of Extrema ..............................................................................................................
361
370
O
6.3 Implicit Differentiation................................................................................................................ 383
6.4 Related Rates ............................................................................................................................... 399
N
6.5 Differentials: Linear Approximation ........................................................................................... 406
Chapter 6 Review Exercises .................................................................................................................. 410
N
Extended Application: A Total Cost Model for a Training Program..................................................... 421
CHAPTER 7 INTEGRATION
O
7.1 Antiderivatives............................................................................................................................. 423
C
7.2 Substitution.................................................................................................................................. 429
7.3 Area and the Definite Integral ..................................................................................................... 437
ED
7.4 The Fundamental Theorem of Calculus....................................................................................... 451
7.5 The Area Between Two Curves................................................................................................... 465
Chapter 7 Review Exercises .................................................................................................................. 480
Extended Application: Estimating Depletion Dates for Minerals.......................................................... 493
M
CHAPTER 8 FURTHER TECHNIQUES AND APPLICATIONS OF INTEGRATION
8.1 Numerical Integration.................................................................................................................. 494
8.2 Integration by Parts...................................................................................................................... 508
8.3 Volume and Average Value......................................................................................................... 517
8.4 Improper Integrals ....................................................................................................................... 525
Chapter 8 Review Exercises .................................................................................................................. 533
Extended Application: Flow Systems .................................................................................................... 545
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller MedConnoisseur. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $19.99. You're not tied to anything after your purchase.