SOLUTION MANUAL
Finite Mathematics & Its Applications
13th Edition by Larry J. Goldstein,
Chapters 1 - 12, Complete
, Contents
Chapter 1: Linear Equations and Straight Lines
A A A A A 1–1
Chapter 2: Matrices
A 2–1
Chapter 3: Linear Programming, A Geometric Approach
A A A A A 3–1
Chapter 4: The Simplex Method
A A A 4–1
Chapter 5: Sets and Counting
A A A 5–1
Chapter 6: Probability
A 6–1
Chapter 7: Probability and Statistics
A A A 7–1
Chapter 8: Markov Processes
A A 8–1
Chapter 9: The Theory of Games
A A A A 9–1
Chapter 10: The Mathematics of Finance
A A A A 10–1
Chapter 11: Logic
A 11–1
Chapter 12: Difference Equations and Mathematical Models
A A A A A 12–1
, Chapter 1A
ExercisesA1.1 5
6.A LeftA1,AdownA
2
1. RightA2,AupA3 y
y
(2,A3
) x
x
(–1, – 2A
A
5
)A
7.A LeftA20,AupA40
2. LeftA1,AupA4 y
y
(–20,A40)
(–1,A4)
x
x
8.A RightA25,AupA30
3.A DownA2 y
y
(25,A30)
x
x
(0,A–2)
9. PointAQAisA2AunitsAtoAtheAleftAandA2AunitsAupAor
4. RightA2
y (—2,A2).
10. PointAPAisA3AunitsAtoAtheArightAandA2AunitsAdownAor
(3,—2).
x
(2,A0 1A
) 11. —2(1)A+A (3)A=A—2A+1A=A—1soA yesA theA pointA is
3
onAtheAline.
5. LeftA2,AupA1 1A
y 12. —2(2)A+A (6)A=A—1AisA false,A soA noA theA pointA isA not
3
onAtheAline
(–2,A1)
x
CopyrightA©A2023APearsonAEducation,AInc 1-1
.
, ChapterA1:ALinearAEquationsAandAStraightALine ISM:AFiniteAMath
s
1A 24.A 0A=A5
13 —2xA+A yA =A—1A SubstituteA theA xA andA y noAsolution
3
. x-
coordinatesAofAtheApointAintoAtheAequation:
f 1A ıhA f h intercept:AnoneA
' ,A3 →A—2 ' 1 ı +A1A(3)A=A—1A→A—1+1A=A—1A is WhenAxA=A0,AyA=A
y' ı 'A ı
5Ay-
intercept:A(0,A5)
2AAA J yA2J 3
aAfalseAstatement.ASoAnoAtheApointAisAnotAonA 25.AWhenAyA=A0,AxA=A7A
theAline. x-
f 1h f1 h intercept:A(7,A0)A0
14 —2 ' ı + ' ı (—1)A=A—1A isAtrueAsoAyesAtheApointAis A=A7
.
noAsolution
'y3 ıJAAA'y3 ıJ y-intercept:Anone
onAtheAline. 26.A 0A=A–8x
15.A mA=A5,AbA=A8 xA=A0
x-intercept:A(0,A0)
16.A mA=A–2AandAbA=A–6 yA=A–8(0)
yA=A0
17.A yA=A0xA+A3;AmA=A0,AbA=A y-intercept:A(0,A0)
3
2A 2A 1A
yA=A xA+A0;A mA=A ,A bA=A0 27 0A=A xA–A1
18 3
3 3 .
. xA=A3
19.A 14xA+A7AyA=A21 x-intercept:A(3,A0)
1A
7AyA=A—14xA+A21 yA =A (0)A–A1
3
yA =A—2xA+A3
yA=A–1
y-intercept:A(0,A–1)
20 xA—AyA =A3 y
. —yA =A—xA+A3
yA =AxA—A3
(3,A0)
21.AAA 3xA=A5 x
5 (0,A–1)
xA=A
3
1 2
28. WhenAxA=A0,AyA=A0.
22 – xA+ yA =A10
. 2 3 WhenAxA=A1,AyA=A2.
2A 1A y
yA =A xA+10
3 2
3A
yA =A xA+15 (1,A2)
4 x
(0,A0)
23. 0A=A—4xA+A8
4xA =A8
xA=A2
x-intercept:A(2,A0)
yA=A–4(0)A+A8
1-2 CopyrightA©A2023APearsonAEducation,AInc
.