SOLUTION MANUAL
Finite Mathematics & Its Applications
13th Edition by Larry J. Goldstein,
Chapters 1 - 12, Complete
, Contents
Chapter 1: Linear Equations and Straight Lines
f f f f f 1–1
Chapter 2: Matrices
f 2–1
Chapter 3: Linear Programming, A Geometric Approach
f f f f f 3–1
Chapter 4: The Simplex Method
f f f 4–1
Chapter 5: Sets and Counting
f f f 5–1
Chapter 6: Probability
f 6–1
Chapter 7: Probability and Statistics
f f f 7–1
Chapter 8: Markov Processes
f f 8–1
Chapter 9: The Theory of Games
f f f f 9–1
Chapter 10: The Mathematics of Finance
f f f f 10–1
Chapter 11: Logic
f 11–1
Chapter 12: Difference Equations and Mathematical Models
f f f f f 12–1
, Chapter 1 f
Exercisesf1.1 5
6.f Leftf1,fdownf
2
1. Rightf2,fupf3 y
y
(2,f3)
x
x
( )
–1,f –f52f
7.f Leftf20,fupf40
2. Leftf1,fupf4 y
y
(–20,f40)
(–1,f4)
x
x
8.f Rightf25,fupf30
3.f Downf2 y
y
(25,f30)
x
x
(0,f–2)
9. PointfQfisf2funitsftofthefleftfandf2funitsfupfor
4. Rightf2
y (—2,f2).
10. PointfPfisf3funitsftofthefrightfandf2funitsfdownfor
(3,—2).
x
(2,f0) 1f
11. —2(1)f+f (3)f=f—2f+1f=f—1sof yesf thef pointf is
3
onfthefline.
5. Leftf2,fupf1 1f
y 12. —2(2)f+f (6)f=f—1fisf false,f sof nof thef pointf isf not
3
onfthefline
(–2,f1)
x
Copyrightf©f2023fPearsonfEducation,fInc. 1-1
, Chapterf1:fLinearfEquationsfandfStraightfLines ISM:fFinitefMath
1f 24.f 0f=f5
13 —2xf+f yf =f—1f Substitutef thef xf andf y nofsolution
3
. x-
coordinatesfoffthefpointfintofthefequation:
f 1f hıf f h intercept:fnonef
' ,f3 →f—2 ' 1 ı +f1f(3)=f f—1f→f—1+1f=f—1f is Whenfxf=f0,fyf=f5fy
y' ı 'f ı
-intercept:f(0,f5)
2fff J yf2J 3
affalsefstatement.fSofnofthefpointfisfnotfonfthef 25.fWhenfyf=f0,fxf=f7fx-
line. intercept:f(7,f0)f0f
f 1h f1h =f7
14 —2 ' ı + ' ı (—1)f=f—1f isftruefsofyesfthefpointfis nofsolution
.
'y3 ıJfff'y3 ıJ y-intercept:fnone
onfthefline. 26.f 0f=f–8x
15.f mf=f5,fbf=f8 xf=f0
x-intercept:f(0,f0)
16.f mf=f–2fandfbf=f–6 yf=f–8(0)
yf=f0
17.f yf=f0xf+f3;fmf=f0,fbf=f3 y-intercept:f(0,f0)
2f 2f 1f
yf=f xf+f0;f mf=f ,f bf=f0 27 0f=f xf–f1
18 3
3 3 .
. xf=f3
19.f 14xf+f7fyf=f21 x-intercept:f(3,f0)
1f
7fyf=f—14xf+f21 yf =f (0)f–f1
3
yf =f—2xf+f3
yf=f–1
y-intercept:f(0,f–1)
20 xf—fyf =f3 y
. —yf =f—xf+f3
yf =fxf—f3
(3,f0) x
21.fff 3xf=f5
5 (0,f–1)
xf=f
3
1 2
28. Whenfxf=f0,fyf=f0.
22 – xf+ yf =f10
. 2 3 Whenfxf=f1,fyf=f2.
2f 1f y
yf =f xf+10
3 2
3f
yf =f xf+15 (1,f2)
4 x
(0,f0)
23. 0f=f—4xf+f8
4xf =f8
xf=f2
x-intercept:f(2,f0)
yf=f–4(0)f+f8
yf=f8
y-intercept:f(0,f8)
1-2 Copyrightf©f2023fPearsonfEducation,fInc.