Exam (elaborations)
ISYE 6414 FINAL EXAM REVIEW QUESTIONS AND 100% CORRECT ANSWERS 2024
ISYE 6414 FINAL EXAM REVIEW QUESTIONS AND 100% CORRECT ANSWERS 2024
[Show more]
Preview 2 out of 12 pages
Uploaded on
September 7, 2024
Number of pages
12
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers
Institution
ISYE 6414
Course
ISYE 6414
By: Performance • 2 months ago
exactly what i was looking for
By: brainscape • 3 weeks ago
Thurnk you very much. All the best in your test.
$11.99
Also available in package deal from $41.14
100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached
Also available in package deal (1)
1. Exam (elaborations) - Isye 6414 - all units questions and 100% correct answers 2024
2. Exam (elaborations) - Isye 6414 final exam review questions and 100% correct answers 2024
3. Exam (elaborations) - Isye 6414 midterm prep questions and 100% correct answers 2024
4. Exam (elaborations) - Isye 6414 - unit 2 flashcards questions and 100% correct answers 2024
5. Exam (elaborations) - Isye 6414 - unit 1 flashcards questions and 100% correct answers 2024
6. Exam (elaborations) - Isye 6414 - unit 4 questions and 100% correct answers 2024
7. Exam (elaborations) - Isye 6414 midterm, summer 2024 questions and 100% correct answers 2024
8. Exam (elaborations) - Isye 6414 - midterm 1 prep questions and 100% correct answers 2024
9. Exam (elaborations) - Isye 6414 midterm 1 study notes questions and answers with solutions 2024
10. Exam (elaborations) - Isye 6414 - unit 5 questions and 100% correct answer 2024
11. Exam (elaborations) - Isye 6414 - midterm exam 3 questions and 100% correct answers 2024
12. Exam (elaborations) - Isye 6414 – homeworks questions and 100% correct answers 2024
13. Exam (elaborations) - Isye6414 (regression) midterm 2 questions and 100% correct answers 2024
Show more
ISYE 6414 FINAL EXAM REVIEW
QUESTIONS AND 100% CORRECT
ANSWERS 2024
LeastLSquareLEliminationL(LSE)LcannotLbeLappliedLtoLGLMLmodels.L-LANSWERLFalseL-
LitLisLapplicableLbutLdoesLnotLuseLdataLdistributionLinformationLfully.
InLmultipleLlinearLregressionLwithLiddLandLequalLvariance,LtheLleastLsquaresLestimationLofLregressionLcoeffic
ientsLareLalwaysLunbiased.L-LANSWERLTrueL-
LtheLleastLsquaresLestimatesLareLBLUEL(BestLLinearLUnbiasedLEstimates)LinLmultipleLlinearLregression.
MaximumLLikelihoodLEstimationLisLnotLapplicableLforLsimpleLlinearLregressionLandLmultipleLlinearLregressio
n.L-LANSWERLFalseL-LInLSLRLandLMLR,LtheLSLELandLMLELareLtheLsameLwithLnormalLiddLdata.
TheLbackwardLeliminationLrequiresLaLpre-setLprobabilityLofLtypeLIILerrorL-LANSWERLFalseL-LTypeLILerror
TheLfirstLdegreeLofLfreedomLinLtheLFLdistributionLforLanyLofLtheLthreeLproceduresLinLstepwiseLisLalwaysLequa
lLtoLone.L-LANSWERLTrue
MLELisLusedLforLtheLGLMsLforLhandlingLcomplicatedLlinkLfunctionLmodelingLinLtheLX-YLrelationship.L-
LANSWERLTrue
InLtheLGLMsLtheLlinkLfunctionLcannotLbeLaLnonLlinearLregression.L-LANSWERLFalseL-
LItLcanLbeLlinear,LnonLlinear,LorLparametric
WhenLtheLp-valueLofLtheLslopeLestimateLinLtheLSLRLisLsmallLtheLr-squaredLbecomesLsmallerLtoo.L-
LANSWERLFalseL-
LWhenLPLvalueLisLsmall,LtheLmodelLfitsLbecomeLmoreLsignificantLandLRLsquaredLbecomeLlarger.
InLGLMsLtheLmainLreasonLoneLdoesLnotLuseLLSELtoLestimateLmodelLparametersLisLtheLpotentialLconstrainedL
inLtheLparameters.L-LANSWERLFalseL-
LTheLpotentialLconstraintLinLtheLparametersLofLGLMsLisLhandledLbyLtheLlinkLfunction.
, TheLR-squaredLandLadjustedLR-
squaredLareLnotLappropriateLmodelLcomparisonsLforLnonLlinearLregressionLbutLareLforLlinearLregressionLmo
dels.L-LANSWERLTRUEL-LTheLunderlyingLassumptionLofLR-
squaredLcalculationsLisLthatLyouLareLfittingLaLlinearLmodel.
TheLdecisionLinLusingLANOVALtableLforLtestingLwhetherLaLmodelLisLsignificantLdependsLonLtheLnormalLdistri
butionLofLtheLresponseLvariableL-LANSWERLTrue
WhenLtheLdataLmayLnotLbeLnormallyLdistributed,LAICLisLmoreLappropriateLforLvariableLselectionLthanLadjust
edLR-squaredL-LANSWERLTrue
TheLslopeLofLaLlinearLregressionLequationLisLanLexampleLofLaLcorrelationLcoefficient.L-LANSWERLFalseL-
LtheLcorrelationLcoefficientLisLtheLrLvalue.LWillLhaveLtheLsameL+LorL-LsignLasLtheLslope.
InLmultipleLlinearLregression,LasLtheLvalueLofLR-squaredLincreases,LtheLrelationship
betweenLpredictorsLbecomesLstrongerL-LANSWERLFalseL-
LrLsquaredLmeasuresLhowLmuchLvariabilityLisLexplainedLbyLtheLmodel,LNOTLhowLstrongLtheLpredictorsLare.
WhenLdealingLwithLaLmultipleLlinearLregressionLmodel,LanLadjustedLR-squaredLcan
beLgreaterLthanLtheLcorrespondingLunadjustedLR-SquaredLvalue.L-LANSWERLFalseL-
LtheLadjustedLrsquaredLvalueLtakeLtheLnumberLandLtypesLofLpredictorsLintoLaccount.LItLisLlowerLthanLtheLrLsq
uaredLvalue.
InLaLmultipleLregressionLproblem,LaLquantitativeLinputLvariableLxLisLreplacedLbyLxL−
mean(x).LTheLR-squaredLforLtheLfittedLmodelLwillLbeLtheLsameL-LANSWERLTrue
TheLestimatedLcoefficientsLofLaLregressionLlineLisLpositive,LwhenLtheLcoefficientLof
determinationLisLpositive.L-LANSWERLFalseL-LrLsquaredLisLalwaysLpositive.
IfLtheLoutcomeLvariableLisLquantitativeLandLallLexplanatoryLvariablesLtakeLvaluesL0Lor
1,LaLlogisticLregressionLmodelLisLmostLappropriate.L-LANSWERLFalseL-
LMoreLresearchLisLnecessaryLtoLdetermineLtheLcorrectLmodel.