Exam (elaborations)
ISYE 6414 - ALL UNITS QUESTIONS AND 100% CORRECT ANSWERS 2024
ISYE 6414 - ALL UNITS QUESTIONS AND 100% CORRECT ANSWERS 2024
[Show more]
Preview 4 out of 47 pages
Uploaded on
September 7, 2024
Number of pages
47
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers
Institution
ISYE 6414
Course
ISYE 6414
$5.99
Also available in package deal from $41.14
100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached
Also available in package deal (1)
1. Exam (elaborations) - Isye 6414 - all units questions and 100% correct answers 2024
2. Exam (elaborations) - Isye 6414 final exam review questions and 100% correct answers 2024
3. Exam (elaborations) - Isye 6414 midterm prep questions and 100% correct answers 2024
4. Exam (elaborations) - Isye 6414 - unit 2 flashcards questions and 100% correct answers 2024
5. Exam (elaborations) - Isye 6414 - unit 1 flashcards questions and 100% correct answers 2024
6. Exam (elaborations) - Isye 6414 - unit 4 questions and 100% correct answers 2024
7. Exam (elaborations) - Isye 6414 midterm, summer 2024 questions and 100% correct answers 2024
8. Exam (elaborations) - Isye 6414 - midterm 1 prep questions and 100% correct answers 2024
9. Exam (elaborations) - Isye 6414 midterm 1 study notes questions and answers with solutions 2024
10. Exam (elaborations) - Isye 6414 - unit 5 questions and 100% correct answer 2024
11. Exam (elaborations) - Isye 6414 - midterm exam 3 questions and 100% correct answers 2024
12. Exam (elaborations) - Isye 6414 – homeworks questions and 100% correct answers 2024
13. Exam (elaborations) - Isye6414 (regression) midterm 2 questions and 100% correct answers 2024
Show more
ISYE 6414 - ALL UNITS QUESTIONS AND
100% CORRECT ANSWERS 2024
responseU(dependent)UvariablesU-
UANSWERUoneUparticularUvariableUthatUweUareUinterestedUinUunderstandingUorUmodelingU(y)
predictingUorUexplanatoryU(independent)UvariablesU-
UANSWERUaUsetUofUotherUvariablesUthatUmightUbeUusefulUinUpredictingUorUmodelingUtheUresponseUvariableU
(x1,Ux2)
WhatUkindUofUvariableUisUaUresponseUvariableUandUwhy?U-
UANSWERUrandom,UbecauseUitUvariesUwithUchangesUinUtheUpredictor/sUalongUwithUotherUrandomUchanges.
WhatUkindUofUvariableUisUaUpredictingUvariableUandUwhy?U-
UANSWERUfixed,UbecauseUitUdoesUnotUchangeUwithUtheUresponseUbutUitUisUfixedUbeforeUtheUresponseUisUme
asured.
linearUrelationshipU-UANSWERUaUsimpleUdeterministicUrelationshipUbetweenU2Ufactors,UxUandUy
whatUareUthreeUthingsUthatUaUregressionUanalysisUisUusedUfor?U-
UANSWERU1.UPredictionUofUtheUresponseUvariable,U2.UModelingUtheUrelationshipUbetweenUtheUresponseUa
ndUexplanatoryUvariables,U3.UTestingUhypothesesUofUassociationUrelationships
B0U=U?U-UANSWERUintercept
B1U=U?U-UANSWERUslope
forUourUlinearUmodelUwhere:UYU=UB0U+UB1U+UEPSILONU(E),UwhatUdoesUtheUepsilonUrepresent?U-
UANSWERUdevianceUofUtheUdataUfromUtheUlinearUmodelU(errorUterm)
whatUareUtheU4UassumptionsUofUlinearUregression?U-
UANSWERULinearity/MeanUZero,UConstantUVariance,UIndependence,UNormality
,Linearity/MeanUzeroUassumptionU-
UANSWERUMeansUthatUtheUexpectedUvalueU(deviances)UofUerrorsUisUzero.UThisUleadsUtoUdifficultiesUinUestim
atingUB0UandUmeansUthatUourUmodelUdoesUnotUincludeUaUnecessaryUsystematicUcomponent
ConstantUvarianceUassumptionU-
UANSWERUMeansUthatUitUcannotUbeUtrueUthatUtheUmodelUisUmoreUaccurateUforUsomeUpartsUofUtheUpopulati
on,UandUlessUaccurateUforUotherUpartsUofUtheUpopulations.UThisUcanUresultUinUlessUaccurateUparametersUan
dUpoorly-calibratedUpredictionUintervals.
AssumptionUofUIndependenceU-
UANSWERUMeansUthatUtheUdeviances,UorUinUfactUtheUresponseUvariablesUys,UareUindependentlyUdrawnUfro
mUtheUdata-
generatingUprocess.U(thisUmostUoftenUoccursUinUtimeUseriesUdata)UThisUcanUresultUinUveryUmisleadingUasses
smentsUofUtheUstrengthUofUregression.
NormalityUassumptionU-
UANSWERUThisUisUneededUifUweUwantUtoUdoUanyUconfidenceUorUpredictionUintervals,UorUhypothesisUtest,Uw
hichUweUusuallyUdo.UIfUthisUassumptionUisUviolated,UhypothesisUtestUandUconfidenceUandUpredictionUinterv
alsUandUbeUveryUmisleading.
whatUareUtheU3UparametersUweUestimatedUinUregression?U-
UANSWERUB0,UB1,UsigmaUsquaredU(varianceUofUtheUoneUpop.)
WhatUdoUweUmeanUbyUmodelUparametersUinUstatistics?U-
UANSWERUModelUparametersUareUunknownUquantities,UandUtheyUstayUunknownUregardlessUhowUmuchUda
taUareUobserved.UWeUestimateUthoseUparametersUgivenUtheUmodelUassumptionsUandUtheUdata,UbutUthroug
hUestimation,Uwe'reUnotUidentifyingUtheUtrueUparameters.UWe'reUjustUestimatingUapproximationsUofUthose
Uparameters.
WhatUisUtheUestimatedUsamplingUdistributionUofUs^2?U-UANSWERUchi-squareUwithUn-1UDF
WhyUdoUweUloseU1UDFUforUs^2?U-UANSWERUweUreplaceUmuUwithUzbar
whatUisUtheUrelationshipUbetweenUs^2UandUsigma^2?U-UANSWERUS^2UestimatesUsigma^2
,WhatUisUtheUestimatedUsamplingUdistributionUofUsigma^2?U-UANSWERUchi-squareUwithUn-
2UDFU(~UequivalentUtoUMSE)
WhyUdoUweUloseU2UDFUforUsigma^2?U-UANSWERUweUreplacedUtwoUparameters,UB0UandUB1
InUSLR,UweUareUinterestedUinUtheUbehaviorUofUwhichUparameter?U-UANSWERUB1
IfUweUhaveUaUpositiveUvalueUforUB1,....U-
UANSWERUthenUthat'sUconsistentUwithUaUdirectUrelationshipUbetweenUtheUpredictingUvariableUxUandUtheUre
sponseUvariableUy.
IfUweUhaveUaUnegativeUvalueUforUB1,....U-
UANSWERUisUconsistentUwithUanUinverseUrelationshipUbetweenUxUandUy
WhenUB1UisUcloseUtoUzero...U-
UANSWERUweUinterpretUthatUthereUisUnotUaUsignificantUassociationUbetweenUpredictingUvariables,Ubetwee
nUtheUpredictingUvariableUx,UandUtheUresponseUvariableUy.
HowUdoUweUinterpretUB1?U-
UANSWERUItUisUtheUestimatedUexpectedUchangeUinUtheUresponseUvariableUassociatedUwithUoneUunitUofUcha
ngeUinUtheUpredictingUvariable.
HowUweUinterpretU^B0?U-
UANSWERUItUisUtheUestimatedUexpectedUvalueUofUtheUresponseUvariable,UwhenUtheUpredictingUvariableUeq
ualsUzero.
WhatUisUtheUsamplingUdistributionUofU^B1?U-UANSWERUtUdistributionUwithUN-2UDF
WhatUcanUweUuseUtoUtestUforUstatisticalUsignificance?U-UANSWERUt-test
WhatUwouldUweUdoUifUtheUTUvalueUisUlarge?U-
UANSWERURejectUtheUnullUhypothesisUthatUβ1UisUequalUtoUzero.UIfUtheUnullUhypothesisUisUrejected,UweUinter
pretUthisUthatUβ1UisUstatisticallyUsignificant.
, whatUdoesU'statisticalUsignificance'Umean?U-UANSWERUB1UisUstatisticallyUdifferentUfromUzero.
whatUisUtheUdistributionUofUB1?U-UANSWERUNormal
TheUestimatorsUforUtheUregressionUcoefficientsUare:
A)UBiasedUbutUwithUsmallUvariance
B)UUnbiasedUunderUnormalityUassumptionsUbutUbiasedUotherwise.
C)UUnbiasedUregardlessUofUtheUdistributionUofUtheUdata.U-UANSWERUC
TheUassumptionUofUnormality:
A)UItUisUneededUforUderivingUtheUestimatorsUofUtheUregressionUcoefficients.
B)UItUisUnotUneededUforUlinearUregressionUmodelingUandUinference.
C)UItUisUneededUforUtheUsamplingUdistributionUofUtheUestimatorsUofUtheUregressionUcoefficientsUandUhenceU
forUinference.
D)UItUisUneededUforUderivingUtheUexpectationUandUvarianceUofUtheUestimatorsUofUtheUregressionUcoefficient
s.U-UANSWERUC
WhatUisU'X*'?U-UANSWERUpredictor
WhereUdoesUuncertaintyUfromUestimationUcomeUfrom?U-UANSWERUfromUestimationUalone
WhereUdoesUuncertaintyUfromUpredictionUcomeUfrom?U-
UANSWERUfromUtheUestimationUofUregressionUparametersUandUfromUtheUnewnessUofUtheUobservationUitsel
f
whatUisUtheUpredictionUintervalUusedUfor?U-
UANSWERUusedUtoUprovideUanUintervalUestimateUforUaUpredictionUofUyUforUoneUmemberUofUtheUpopulationU
withUaUparticularUvalueUofUx*