100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Summary Linear Algebra $7.49   Add to cart

Summary

Summary Linear Algebra

 7 views  0 purchase
  • Course
  • Institution

Linear algebra studies vector spaces and linear mappings between them. It involves matrices, determinants, eigenvalues, and eigenvectors, providing a foundation for various fields such as computer science, physics, and engineering.

Preview 4 out of 255  pages

  • July 26, 2024
  • 255
  • 2023/2024
  • Summary
avatar-seller
Notes on Mathematics - 1021

Peeyush Chandra, A. K. Lal, V. Raghavendra, G. Santhanam




1
Supported by a grant from MHRD

,2

,Contents

I Linear Algebra 7

1 Matrices 9
1.1 Definition of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.1 Special Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Operations on Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Multiplication of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Some More Special Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1 Submatrix of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Block Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Matrices over Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Linear System of Equations 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Definition and a Solution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 A Solution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Row Operations and Equivalent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Gauss Elimination Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Row Reduced Echelon Form of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Gauss-Jordan Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Elementary Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Rank of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Existence of Solution of Ax = b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.2 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7 Invertible Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7.1 Inverse of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7.2 Equivalent conditions for Invertibility . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.7.3 Inverse and Gauss-Jordan Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.8 Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.8.1 Adjoint of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.8.2 Cramer’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.9 Miscellaneous Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Finite Dimensional Vector Spaces 49
3.1 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3

, 4 CONTENTS

3.1.3 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.4 Linear Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Linear Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.1 Important Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Ordered Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Linear Transformations 69
4.1 Definitions and Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Matrix of a linear transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Rank-Nullity Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Similarity of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Inner Product Spaces 87
5.1 Definition and Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Gram-Schmidt Orthogonalisation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3 Orthogonal Projections and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.1 Matrix of the Orthogonal Projection . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Eigenvalues, Eigenvectors and Diagonalization 107
6.1 Introduction and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3 Diagonalizable matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4 Sylvester’s Law of Inertia and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 121


II Ordinary Differential Equation 129

7 Differential Equations 131
7.1 Introduction and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.2 Separable Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.2.1 Equations Reducible to Separable Form . . . . . . . . . . . . . . . . . . . . . . . . 134
7.3 Exact Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.3.1 Integrating Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.4 Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.5 Miscellaneous Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.6 Initial Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.6.1 Orthogonal Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.7 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8 Second Order and Higher Order Equations 153
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.2 More on Second Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.2.1 Wronskian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.2.2 Method of Reduction of Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.3 Second Order equations with Constant Coefficients . . . . . . . . . . . . . . . . . . . . . . 160
8.4 Non Homogeneous Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.5 Variation of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.6 Higher Order Equations with Constant Coefficients . . . . . . . . . . . . . . . . . . . . . . 166

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller vishnubharla. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $7.49. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

78998 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$7.49
  • (0)
  Add to cart