, A SURVEY OF CLASSICAL AND MODERN
GEOMETRIES WITH COMPUTER ACTIVITIES
1ST EDITION BY ARTHUR BARAGAR SOLUTION
MANUAL
Contents
1 Euclidean Geometry 1
1.1 The Pythagorean Theorem ................................................................ 3
1.2 The Axioms of Euclidean Geometry ................................................. 5
1.3 SSS, SAS, and ASA ........................................................................ 7
1.4 Parallel Lines ..................................................................................... 11
1.5 Pons Asinorum .................................................................................. 12
1.6 The Star Trek Lemma ...................................................................... 12
1.7 Similar Triangles ............................................................................... 18
1.8 Power of the Point ........................................................................... 24
1.9 The Medians and Centroid .............................................................. 33
1.10 The Incircle, Excircles, and the Law of Cosines ............................ 35
1.11 The Circumcircle and Law of Sines ................................................ 42
1.12 The Euler Line .................................................................................. 48
1.13 The Nine Point Circle ..................................................................... 50
1.14 Pedal Triangles and the Simson Line ............................................. 57
1.15 Menelaus and Ceva ........................................................................... 67
2 Geometry in Greek Astronomy 75
2.1 The Relative Size of the Moon and Sun ......................................... 75
2.2 The Diameter of the Earth .............................................................. 76
3 Constructions Using a Compass and Straightedge 81
3.1 The Rules ........................................................................................... 81
3.2 Some Examples ................................................................................. 81
3.3 Basic Results ..................................................................................... 82
3.4 The Algebra of Constructible Lengths ........................................... 92
3.5 The Regular Pentagon ...................................................................... 94
3.6 Other Constructible Figures .......................................................... 102
, 3.7 Trisecting an Arbitrary Angle ....................................................... 105
4 Geometer’s Sketchpad 111
4.1 The Rules of Constructions ........................................................... 111
4.2 Lemmas and Theorems .................................................................. 111
4.3 Archimedes’ Trisection Algorithm ................................................ 114
v
vi CONTENTS
4.4 Verification of Theorems ............................................................... 114
4.5 Sophisticated Results ..................................................................... 117
4.6 Parabola Paper ............................................................................... 120
5 Higher Dimensional Objects 125
5.1 The Platonic Solids ......................................................................... 125
5.2 The Duality of Platonic Solids .................................................... 127
5.3 The Euler Characteristic ................................................................ 127
5.4 Semiregular Polyhedra .................................................................. 127
5.5 A Partial Categorization of Semiregular Polyhedra ................... 130
5.6 Four-Dimensional Objects ............................................................. 138
6 Hyperbolic Geometry 143
6.1 Models ............................................................................................. 143
6.2 Results from Neutral Geometry .................................................... 143
6.3 The Congruence of Similar Triangles........................................... 145
6.4 Parallel and Ultraparallel Lines .................................................... 145
6.5 Singly Asymptotic Triangles.......................................................... 146
6.6 Doubly and Triply Asymptotic Triangles .................................... 146
6.7 The Area of Asymptotic Triangles ............................................... 147
7 The Poincaré Models of Hyperbolic Geometry 149
7.1 The Poincaré Upper Half Plane Model ........................................ 149
7.2 Vertical (Euclidean) Lines ............................................................. 149
7.3 Isometries ........................................................................................ 149
7.4 Inversion in the Circle ................................................................... 150
7.5 Inversion in Euclidean Geometry ................................................. 161
7.6 Fractional Linear Transformations .............................................. 164
7.7 The Cross Ratio .............................................................................. 169
7.8 Translations .................................................................................... 173
7.9 Rotations ......................................................................................... 177
7.10 Reflections ....................................................................................... 181
7.11 Lengths ............................................................................................ 185
7.12 The Axioms of Hyperbolic Geometry ........................................... 186
7.13 The Area of Triangles .................................................................... 186
7.14 The Poincaré Disc Model .............................................................. 188
7.15 Circles and Horocycles................................................................... 190
7.16 Hyperbolic Trigonometry .............................................................. 195
7.17 The Angle of Parallelism ............................................................... 207
7.18 Curvature......................................................................................... 209
, 8 Tilings and Lattices 211
8.1 Regular Tilings ................................................................................ 211
8.2 Semiregular Tilings ........................................................................ 211
8.3 Lattices and Fundamental Domains ............................................. 212
8.4 Tilings in Hyperbolic Space .......................................................... 212
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller Succeed. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $20.99. You're not tied to anything after your purchase.