100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Class 12 pcm notes $9.79   Add to cart

Class notes

Class 12 pcm notes

 4 views  0 purchase
  • Course
  • Institution

In this website you will get physics, chemistry and mathematics notes . The level of notes is (cbsc board , jee [Mains,Advance] based.

Preview 3 out of 19  pages

  • May 15, 2024
  • 19
  • 2023/2024
  • Class notes
  • Dhanraj patil
  • 12
  • Secondary school
  • 5
avatar-seller
Chapter 2
RELATIONS AND FUNCTIONS

Mathematics is the indispensable instrument of
all physical research. – BERTHELOT 

2.1 Introduction
Much of mathematics is about finding a pattern – a
recognisable link between quantities that change. In our
daily life, we come across many patterns that characterise
relations such as brother and sister, father and son, teacher
and student. In mathematics also, we come across many
relations such as number m is less than number n, line l is
parallel to line m, set A is a subset of set B. In all these, we
notice that a relation involves pairs of objects in certain
order. In this Chapter, we will learn how to link pairs of
objects from two sets and then introduce relations between
the two objects in the pair. Finally, we will learn about G . W. Leibnitz
special relations which will qualify to be functions. The (1646–1716)
concept of function is very important in mathematics since it captures the idea of a
mathematically precise correspondence between one quantity with the other.
2.2 Cartesian Products of Sets
Suppose A is a set of 2 colours and B is a set of 3 objects, i.e.,
A = {red, blue}and B = {b, c, s},
where b, c and s represent a particular bag, coat and shirt, respectively.
How many pairs of coloured objects can be made from these two sets?
Proceeding in a very orderly manner, we can see that there will be 6
distinct pairs as given below:
(red, b), (red, c), (red, s), (blue, b), (blue, c), (blue, s).
Thus, we get 6 distinct objects (Fig 2.1).
Let us recall from our earlier classes that an ordered pair of elements Fig 2.1
taken from any two sets P and Q is a pair of elements written in small



2022-23

, RELATIONS AND FUNCTIONS 31


brackets and grouped together in a particular order, i.e., (p,q), p ∈ P and q ∈ Q . This
leads to the following definition:
Definition 1 Given two non-empty sets P and Q. The cartesian product P × Q is the
set of all ordered pairs of elements from P and Q, i.e.,
P × Q = { (p,q) : p ∈ P, q ∈ Q }
If either P or Q is the null set, then P × Q will also be empty set, i.e., P × Q = φ
From the illustration given above we note that
A × B = {(red,b), (red,c), (red,s), (blue,b), (blue,c), (blue,s)}.
Again, consider the two sets:
A = {DL, MP, KA}, where DL, MP, KA represent Delhi,
Madhya Pradesh and Karnataka, respectively and B = {01,02, 03
03}representing codes for the licence plates of vehicles issued 02
by DL, MP and KA . 01
If the three states, Delhi, Madhya Pradesh and Karnataka
were making codes for the licence plates of vehicles, with the DL MP KA
restriction that the code begins with an element from set A,
Fig 2.2
which are the pairs available from these sets and how many such
pairs will there be (Fig 2.2)?
The available pairs are:(DL,01), (DL,02), (DL,03), (MP,01), (MP,02), (MP,03),
(KA,01), (KA,02), (KA,03) and the product of set A and set B is given by
A × B = {(DL,01), (DL,02), (DL,03), (MP,01), (MP,02), (MP,03), (KA,01), (KA,02),
(KA,03)}.
It can easily be seen that there will be 9 such pairs in the Cartesian product, since
there are 3 elements in each of the sets A and B. This gives us 9 possible codes. Also
note that the order in which these elements are paired is crucial. For example, the code
(DL, 01) will not be the same as the code (01, DL).
As a final illustration, consider the two sets A= {a1, a2} and
B = {b1, b2, b3, b4} (Fig 2.3).
A × B = {( a1, b1), (a1, b2), (a1, b3), (a1, b4), (a2, b1), (a2, b2),
(a2, b3), (a2, b4)}.
The 8 ordered pairs thus formed can represent the position of points in
the plane if A and B are subsets of the set of real numbers and it is
obvious that the point in the position (a1, b2) will be distinct from the point
Fig 2.3
in the position (b2, a1).
Remarks
(i) Two ordered pairs are equal, if and only if the corresponding first elements
are equal and the second elements are also equal.



2022-23

, 32 MATHEMATICS


(ii) If there are p elements in A and q elements in B, then there will be pq
elements in A × B, i.e., if n(A) = p and n(B) = q, then n(A × B) = pq.
(iii) If A and B are non-empty sets and either A or B is an infinite set, then so is
A × B.
(iv) A × A × A = {(a, b, c) : a, b, c ∈ A}. Here (a, b, c) is called an ordered
triplet.

Example 1 If (x + 1, y – 2) = (3,1), find the values of x and y.
Solution Since the ordered pairs are equal, the corresponding elements are equal.
Therefore x + 1 = 3 and y – 2 = 1.
Solving we get x = 2 and y = 3.
Example 2 If P = {a, b, c} and Q = {r}, form the sets P × Q and Q × P.
Are these two products equal?
Solution By the definition of the cartesian product,
P × Q = {(a, r), (b, r), (c, r)} and Q × P = {(r, a), (r, b), (r, c)}
Since, by the definition of equality of ordered pairs, the pair (a, r) is not equal to the pair
(r, a), we conclude that P × Q ≠ Q × P.
However, the number of elements in each set will be the same.
Example 3 Let A = {1,2,3}, B = {3,4} and C = {4,5,6}. Find
(i) A × (B ∩ C) (ii) (A × B) ∩ (A × C)
(iii) A × (B ∪ C) (iv) (A × B) ∪ (A × C)
Solution (i) By the definition of the intersection of two sets, (B ∩ C) = {4}.
Therefore, A × (B ∩ C) = {(1,4), (2,4), (3,4)}.
(ii) Now (A × B) = {(1,3), (1,4), (2,3), (2,4), (3,3), (3,4)}
and (A × C) = {(1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6)}
Therefore, (A × B) ∩ (A × C) = {(1, 4), (2, 4), (3, 4)}.
(iii) Since, (B ∪ C) = {3, 4, 5, 6}, we have
A × (B ∪ C) = {(1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,3),
(3,4), (3,5), (3,6)}.
(iv) Using the sets A × B and A × C from part (ii) above, we obtain
(A × B) ∪ (A × C) = {(1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6),
(3,3), (3,4), (3,5), (3,6)}.




2022-23

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller dhanrajpatil7698. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $9.79. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

75759 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$9.79
  • (0)
  Add to cart