100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
As & A Level Further Mathematics 9231/12 paper 1 Further Pure Mathematics 1 May/June 2023 Authentic Marking Scheme Attached $10.15   Add to cart

Exam (elaborations)

As & A Level Further Mathematics 9231/12 paper 1 Further Pure Mathematics 1 May/June 2023 Authentic Marking Scheme Attached

 9 views  0 purchase
  • Course
  • Institution

As & A Level Further Mathematics 9231/12 paper 1 Further Pure Mathematics 1 May/June 2023 Authentic Marking Scheme Attached

Preview 4 out of 36  pages

  • April 11, 2024
  • 36
  • 2023/2024
  • Exam (elaborations)
  • Questions & answers
avatar-seller
Cambridge International AS & A Level
* 5 5 7 2 6 8 0 2 0 5 *




FURTHER MATHEMATICS 9231/12
Paper 1 Further Pure Mathematics 1 May/June 2023

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
● Answer all questions.
● Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
● Write your name, centre number and candidate number in the boxes at the top of the page.
● Write your answer to each question in the space provided.
● Do not use an erasable pen or correction fluid.
● Do not write on any bar codes.
● If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
● You should use a calculator where appropriate.
● You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
● Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.


INFORMATION
● The total mark for this paper is 75.
● The number of marks for each question or part question is shown in brackets [ ].




This document has 20 pages. Any blank pages are indicated.


DC (PQ) 311427/1
© UCLES 2023 [Turn over

, 2

BLANK PAGE




© UCLES 2023 9231/12/M/J/23

, 3

3 0
1 Let A = e o.
1 1
(a) Prove by mathematical induction that, for all positive integers n,
2 # 3n 0
2A n = e n o. [5]
3 -1 2

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

(b) Find, in terms of n, the inverse of A n . [2]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

© UCLES 2023 9231/12/M/J/23 [Turn over

, 4

2 The cubic equation x 3 + 4x 2 + 6x + 1 = 0 has roots a , b , c .

(a) Find the value of a 2 + b 2 + c 2 . [2]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

(b) Use standard results from the list of formulae (MF19) to show that
n
/`(a + r) 2
+ (b + r) 2 + (c + r) 2j = n (n 2 + an + b) ,
r=1

where a and b are constants to be determined. [6]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................


© UCLES 2023 9231/12/M/J/23

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller StudyTimeOT. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $10.15. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

84146 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$10.15
  • (0)
  Add to cart