100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Vector Algebra Questions and Answers $15.49   Add to cart

Exam (elaborations)

Vector Algebra Questions and Answers

 1 view  0 purchase
  • Course
  • Institution

Vector Algebra Questions and Answers pt3

Preview 2 out of 12  pages

  • April 6, 2024
  • 12
  • 2023/2024
  • Exam (elaborations)
  • Questions & answers
  • Unknown
avatar-seller
JEE ADVANCED - VOL - I VECTOR ALGEBRA
 ^ ^  ^ ^ ^
60. OA  4 i  3 k ; OB  14 i  2 j  5 i
MULTI ANSWER QUESTIONS ^ ^ ^ ^ ^
^ 4 i  3 k ^ 14 i  2 j  5 k
a ;b 
  5 15
55. Let a  2iˆ  4 ˆj  5kˆ and b  iˆ  2 ˆj  3kˆ.
   ^ ^ ^ ^ ^

Then the diagonals of the parallelogram are r   12 i  9 j  14 i  2 j  5 k 
 ^ ^ ^  ^ ^ ^
15  
p  3i 6 j 2 k, q   i 2 j 8 k    ^ ^ ^

So, unit vectors along the diagonals are r  2 i  2 j  5 k 
15  
1 ^ ^ ^
 1  ^ ^ ^

 3 i  6 j  2 k  and   i  2 j  8 k   2  ^ ^ ^

7  69   r i  j  2 k

15  
56. We have ,
 ^ ^ ^  ^ ^
1 2 3
AB   i  j  4 k , BC  3 i  3 j and
0   0
 ^ ^ ^ 61. For coplanar vectors,
CA  4 i  2 j  4k 0 0 2  1
  
Therefore. AB  BC  3 2 and CA  6 1
  2  1   0    0,
 2  2  2 2
Narayana Junior Colleges




Clearly , AB + BC = AC  ^ ^ ^  ^ ^ ^
62. Let   i  x j  3 k ,   4 i   4 x  2  j  2 k
Hence , the triangle is right -angled isosceles
triangle  
Given, 2   
57. use  a b c   0
2
 2 10  x 2  20  4  2 x  1
x 2 5
58.    k  say 
1 y z  10  x 2  5   4 x 2  4 x  1
where k  R
        3x 2  4 x  4  0
59. a  2 i  2 j  k,b  i  2 j  2k
  2
 | a | 3, | b | 3  x  2, 
3
 a vector along bisectors
 2 2 2 

a b
      
2 i  2 j  k i  2 j  2k
63. We have, a  b  a  b  2 a.b  
     
|a| |b| 3 3  2 2 2  
 a  b  a  b  2 a b cos 2
 1 1 4 
 i  k, i  j  k
 2  
3 3 3
 the required vector = 2

 a  b  2  2 cos 2  a  b  1 
 1  2
1 4   a  b  4sin 2 
i k i  j k
3 3 3
.
2
,2.
2 2  
2  1  1  4 2  a  b  2 sin 
1     3    3  1
 3    
 
Now, a  b  1

 2 sin   1
148 Narayana Junior Colleges

, VECTOR ALGEBRA JEE ADVANCED - VOL - I

1        
 sin  
2
Hence, a  b  b  c  c  a  2 a  b  
   
   5   
or 6 b  c or 3  c  a 
   0,  or    ,       
 6  6  67. a  b  c,b  c  a
    
64. a  b  a  2b Taking cross with b in first equation, we get
     
2  
b  a b  b c  a
  b 2      
 a.b  
2  
 b a  a.b b  a  b  1 and a.b  0
2       
  1 b 2 1 Also a  b  c  a b sin  c
a .b    2 1 2
Also 2  
b 2 2 b 2 a c

 2  1 Using A.M.  G.M. 1
68. x.y  y.z  z.x  2  2   1.
  2
65. Consider V1.V2  0  A  900
       
Let a   x  y  z   x.z y  x.y z
A

 
   
 yz 
Narayana Junior Colleges




V1  3 a  b  
V2  b  a.b a


a.y  

2
 
 a  a.y y  z 

C
Similarly b   b.z  z  x 
B


  
 
b  aˆ.b a 3 aˆ  b a.b    a.y  b  z 
Using the sine law, 
sin  cos  69. The given vector equation can be written as
^ ^
      1  a  x  3 y  4 z  i   x  (3  a ) y  5 z  j
1 b  a .b

a 1  
a b a   
 tan       ^
3 a b 3 a b  3x  y  az  k  0
 (1-a)x+3y-4z=0
  

1 a  b a sin 90
0
1
x-(3+a)y+5z=0 and 3x+y-az =0
    The above system of equation has a non-trivial
3 a b 3 solution

 1 a 3 4
 
6  1  3  a  5  0
 
66. We know that a  b  c  0 , then 3 1 a
     
a b  b c  c a  a  0, 1
 
Given a  2b  3c  0  ^ ^
      70. We have a  2 p i  j
 2a  b  6b  c  3c  a
Narayana Junior Colleges 149

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller UpperCrust. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $15.49. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

83637 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$15.49
  • (0)
  Add to cart