100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Solution Manual For Differential Equations with Boundary-Value Problems, 10th Edition by Dennis G. Zill $17.49   Add to cart

Exam (elaborations)

Solution Manual For Differential Equations with Boundary-Value Problems, 10th Edition by Dennis G. Zill

1 review
 78 views  1 purchase
  • Course
  • SM+TB
  • Institution
  • SM+TB

Solution Manual For Differential Equations with Boundary-Value Problems, 10th Edition by Dennis G. Zill

Preview 4 out of 1029  pages

  • March 23, 2024
  • 1029
  • 2023/2024
  • Exam (elaborations)
  • Questions & answers
  • SM+TB
  • SM+TB

1  review

review-writer-avatar

By: elenaabbruzzi • 4 months ago

avatar-seller
solutions
SolutionandAnswerGuide:Zill,DIFFERENTIALEQUATIONSWi thBOUNDARY-VALUEPROBLEMS2024,9780357760451;Chapter# 1:
IntroductiontoDifferentialEquations
SolutionandAnswerGuide
ZILL,DIFFERENTIALEQUATIONSW ITHBOUNDARY-VALUEPROBLEMS2024,
9780357760451;C HAPTER#1:INTRODUCTIONTODIFFERENTIALEQUATIONS
TABLEOFCONTENTS
EndofSectionSolutions.............................. ................................................ 1
Exercises1.1....................................... ................................................... ... 1
Exercises1.2....................................... ................................................... ... 14
Exercises1.3....................................... ................................................... ... 22
Chapter1inReviewSolutions.......................... ............................................. 30
ENDOFSECTIONSOLUTIONS
EXERCISES1.1
1.Secondorder;linear
2.Thirdorder;nonlinearbecauseof (dy/dx)4
3.Fourthorder;linear
4.Secondorder;nonlinearbecauseof cos(r+u)
5.Secondorder;nonlinearbecauseof (dy/dx)2or/radicalbig
1+(dy/dx)2
6.Secondorder;nonlinearbecauseof R2
7.Thirdorder;linear
8.Secondorder;nonlinearbecauseof ˙x2
9.Firstorder;nonlinearbecauseof sin(dy/dx)
10.Firstorder;linear
11.Writingthedifferentialequationintheform x(dy/dx) +y2= 1,weseethatitisnonlinear
inybecauseof y2.However,writingitintheform (y2−1)(dx/dy) +x= 0,weseethatitis
linearin x.
12.Writingthedifferentialequationintheform u(dv/du) + (1 + u)v=ueuweseethatitis
linearin v.However,writingitintheform (v+uv−ueu)(du/dv) +u= 0,weseethatitis
nonlinearin u.
13.Fromy=e−x/2weobtain y′=−1
2e−x/2.Then2y′+y=−e−x/2+e−x/2= 0.
©2023Cengage.AllRightsReserved.Maynotbescanned,copie d,orduplicated,orpostedotapubliclyaccessible
website,inwholeorinpart.1 SolutionandAnswerGuide:Zill,DIFFERENTIALEQUATIONSWi thBOUNDARY-VALUEPROBLEMS2024,9780357760451;Chapter# 1:
IntroductiontoDifferentialEquations
14.Fromy=6
5−6
5e−20tweobtain dy/dt= 24e−20t,sothat
dy
dt+20y= 24e−20t+20/parenleftbigg6
5−6
5e−20t/parenrightbigg
= 24.
15.Fromy=e3xcos2xweobtain y′= 3e3xcos2x−2e3xsin2xandy′′= 5e3xcos2x−12e3xsin2x,
sothaty′′−6y′+13y= 0.
16.Fromy=−cosxln(secx+tanx)weobtain y′=−1+sinxln(secx+tanx)and
y′′= tanx+cosxln(secx+tanx).Theny′′+y= tanx.
17.Thedomainofthefunction,foundbysolving x+2≥0,is[−2,∞).Fromy′= 1+2(x+2)−1/2
wehave
(y−x)y′= (y−x)[1+(2(x+2)−1/2]
=y−x+2(y−x)(x+2)−1/2
=y−x+2[x+4(x+2)1/2−x](x+2)−1/2
=y−x+8(x+2)1/2(x+2)−1/2=y−x+8.
Anintervalofdefinitionforthesolutionofthedifferential equationis (−2,∞)because y′is
notdefinedat x=−2.
18.Sincetanxisnotdefinedfor x=π/2 +nπ,naninteger,thedomainof y= 5tan5 xis
{x/vextendsingle/vextendsingle5x/ne}ationslash=π/2+nπ}
or{x/vextendsingle/vextendsinglex/ne}ationslash=π/10+nπ/5}.Fromy′= 25sec25xwehave
y′= 25(1+tan25x) = 25+25tan25x= 25+y2.
Anintervalofdefinitionforthesolutionofthedifferential equationis (−π/10,π/10).An-
otherintervalis (π/10,3π/10),andsoon.
19.Thedomainofthefunctionis {x/vextendsingle/vextendsingle4−x2/ne}ationslash= 0}or{x/vextendsingle/vextendsinglex/ne}ationslash=−2orx/ne}ationslash= 2}.Fromy′=
2x/(4−x2)2wehave
y′= 2x/parenleftbigg1
4−x2/parenrightbigg2
= 2xy2.
Anintervalofdefinitionforthesolutionofthedifferential equationis (−2,2).Otherinter-
valsare(−∞,−2)and(2,∞).
20.Thefunctionis y= 1/√
1−sinx,whosedomainisobtainedfrom 1−sinx/ne}ationslash= 0orsinx/ne}ationslash= 1.
Thus,thedomainis {x/vextendsingle/vextendsinglex/ne}ationslash=π/2+2nπ}.Fromy′=−1
2(1−sinx)−3/2(−cosx)wehave
2y′= (1−sinx)−3/2cosx= [(1−sinx)−1/2]3cosx=y3cosx.
Anintervalofdefinitionforthesolutionofthedifferential equationis (π/2,5π/2).Another
oneis(5π/2,9π/2),andsoon.
©2023Cengage.AllRightsReserved.Maynotbescanned,copie d,orduplicated,orpostedotapubliclyaccessible
website,inwholeorinpart.2 SolutionandAnswerGuide:Zill,DIFFERENTIALEQUATIONSWi thBOUNDARY-VALUEPROBLEMS2024,9780357760451;Chapter# 1:
IntroductiontoDifferentialEquations
21.Writingln(2X−1)−ln(X−1) =tanddifferentiating
implicitlyweobtain
2
2X−1dX
dt−1
X−1dX
dt= 1
/parenleftbigg2
2X−1−1
X−1/parenrightbiggdX
dt= 1
2X−2−2X+1
(2X−1)(X−1)dX
dt= 1
dX
dt=−(2X−1)(X−1) = (X−1)(1−2X).– 4 –2 2 4t
– 4–224x
Exponentiatingbothsidesoftheimplicitsolutionweobtai n
2X−1
X−1=et
2X−1 =Xet−et
(et−1) = (et−2)X
X=et−1
et−2.
Solvinget−2 = 0wegett= ln2.Thus,thesolutionisdefinedon (−∞,ln2)oron(ln2,∞).
Thegraphofthesolutiondefinedon (−∞,ln2)isdashed,andthegraphofthesolution
definedon (ln2,∞)issolid.
22.Implicitlydifferentiatingthesolution,weobtain
−2x2dy
dx−4xy+2ydy
dx= 0
−x2dy−2xydx+ydy= 0
2xydx+(x2−y)dy= 0.
Usingthequadraticformulatosolve y2−2x2y−1 = 0
fory,wegety=/parenleftbig
2x2±√
4x4+4/parenrightbig
/2 =x2±√
x4+1.
Thus,twoexplicitsolutionsare y1=x2+√
x4+1and
y2=x2−√
x4+1.Bothsolutionsaredefinedon (−∞,∞).
Thegraphof y1(x)issolidandthegraphof y2isdashed.– 4 –2 2 4x
– 4–224y
©2023Cengage.AllRightsReserved.Maynotbescanned,copie d,orduplicated,orpostedotapubliclyaccessible
website,inwholeorinpart.3 SolutionandAnswerGuide:Zill,DIFFERENTIALEQUATIONSWi thBOUNDARY-VALUEPROBLEMS2024,9780357760451;Chapter# 1:
IntroductiontoDifferentialEquations
23.Differentiating P=c1et//parenleftbig
1+c1et/parenrightbig
weobtain
dP
dt=/parenleftbig
1+c1et/parenrightbig
c1et−c1et·c1et
(1+c1et)2=c1et
1+c1et/bracketleftbig/parenleftbig
1+c1et/parenrightbig
−c1et/bracketrightbig
1+c1et
=c1et
1+c1et/bracketleftbigg
1−c1et
1+c1et/bracketrightbigg
=P(1−P).
24.Differentiating y= 2x2−1+c1e−2x2weobtaindy
dx= 4x−4xc1e−2x2,sothat
dy
dx+4xy= 4x−4xc1e−2x2+8x3−4x+4c1xe−x2= 8x3
25.Fromy=c1e2x+c2xe2xweobtaindy
dx= (2c1+c2)e2x+2c2xe2xandd2y
dx2= (4c1+4c2)e2x+
4c2xe2x,sothat
d2y
dx2−4dy
dx+4y= (4c1+4c2−8c1−4c2+4c1)e2x+(4c2−8c2+4c2)xe2x= 0.
26.Fromy=c1x−1+c2x+c3xlnx+4x2weobtain
dy
dx=−c1x−2+c2+c3+c3lnx+8x,
d2y
dx2= 2c1x−3+c3x−1+8,
and
d3y
dx3=−6c1x−4−c3x−2,
sothat
x3d3y
dx3+2x2d2y
dx2−xdy
dx+y= (−6c1+4c1+c1+c1)x−1+(−c3+2c3−c2−c3+c2)x
+(−c3+c3)xlnx+(16−8+4)x2= 12x2
InProblems 25–28,weusetheProductRuleandthederivativeofanintegral(( 12)ofthissection):
d
dxˆx
ag(t)dt=g(x).
27.Differentiating y=e3xˆx
1e−3t
tdtweobtaindy
dx=e3xˆx
1e−3t
tdt+e−3t
x·e3xor
dy
dx=e3xˆx
1e−3t
tdt+1
x,sothat
xdy
dx−3xy=x/parenleftbigg
e3xˆx
1e−3t
tdt+1
x/parenrightbigg
−3x/parenleftbigg
e3xˆx
1e−3t
tdt/parenrightbigg
=xe3xˆx
1e−3t
tdt+1−3xe3xˆx
1e−3t
tdt= 1
©2023Cengage.AllRightsReserved.Maynotbescanned,copie d,orduplicated,orpostedotapubliclyaccessible
website,inwholeorinpart.4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller solutions. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $17.49. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

78998 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$17.49  1x  sold
  • (1)
  Add to cart