100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Advanced Calculus Folland Solutions Manual PDF $9.99   Add to cart

Class notes

Advanced Calculus Folland Solutions Manual PDF

 20 views  0 purchase
  • Course
  • Institution
  • Book

Complete Answers Solutions Manual PDF for Advanced Calculus by Gerald B Folland. Includes the answers for all of the exercises of the book.

Preview 4 out of 72  pages

  • March 20, 2024
  • 72
  • 2023/2024
  • Class notes
  • Pepeu palala
  • All classes
avatar-seller
Instructor’s Solution Manual for
ADVANCED CALCULUS


Gerald B. Folland

,
,Contents
1 Setting the Stage 1
1.1 Euclidean Spaces and Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Subsets of Euclidean Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Limits and Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.8 Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Differential Calculus 8
2.1 Differentiability in One Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Differentiability in Several Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 The Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Functional Relations and Implicit Functions: A First Look . . . . . . . . . . . . . . . . . . 10
2.6 Higher-Order Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Taylor’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 Critical Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 Extreme Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.10 Vector-Valued Functions and Their Derivatives . . . . . . . . . . . . . . . . . . . . . . . . 17

3 The Implicit Function Theorem and its Applications 19
3.1 The Implicit Function Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Curves in the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Surfaces and Curves in Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Transformations and Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Functional Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Integral Calculus 25
4.1 Integration on the Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Integration in Higher Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Multiple Integrals and Iterated Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Change of Variables for Multiple Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Functions Defined by Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.6 Improper Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.7 Improper Multiple Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iii

, iv Contents

5 Line and Surface Integrals; Vector Analysis 34
5.1 Arc Length and Line Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Green’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Surface Area and Surface Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Vector Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 The Divergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.6 Some Applications to Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.7 Stokes’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.8 Integrating Vector Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Infinite Series 43
6.1 Definitions and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Series with Nonnegative Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Absolute and Conditional Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4 More Convergence Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.5 Double Series; Products of Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Functions Defined by Series and Integrals 49
7.1 Sequences and Series of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Integrals and Derivatives of Sequences and Series . . . . . . . . . . . . . . . . . . . . . . . 50
7.3 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.4 The Complex Exponential and Trig Functions . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.5 Functions Defined by Improper Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.6 The Gamma Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.7 Stirling’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8 Fourier Series 59
8.1 Periodic Functions and Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2 Convergence of Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.3 Derivatives, Integrals, and Uniform Convergence . . . . . . . . . . . . . . . . . . . . . . . 61
8.4 Fourier Series on Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.5 Applications to Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.6 The Infinite-Dimensional Geometry of Fourier Series . . . . . . . . . . . . . . . . . . . . . 65

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller SolutionsWizard. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $9.99. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

77254 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$9.99
  • (0)
  Add to cart