100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
INTEGRALS MCQ $7.99   Add to cart

Exam (elaborations)

INTEGRALS MCQ

 1 view  0 purchase
  • Course
  • Institution

The pdf contains multiple type questions on the topic INTEGRALS. The pdf contains the most important questions and covers all the topics in depth. Answers have been also given on the last page.

Preview 4 out of 31  pages

  • June 6, 2023
  • 31
  • 2022/2023
  • Exam (elaborations)
  • Questions & answers
  • Secondary school
  • 5
avatar-seller
CHAPTER 7

INTEGRALS

MULTIPLE CHOICE QUESTIONS
S.No. Question

1
1. The anti derivatives of √𝑥 + equals
√𝑥

1 1
1
(a) 3 𝑥 3 + 2𝑥 2 + 𝐶
2
2 1
(b) 𝑥 3 + 𝑥 2 + 𝐶
3 2
3 1
2
(c) 𝑥 + 2𝑥 2 + 𝐶
2
3
3 1
3 1
(d) 2 𝑥 2 + 2 𝑥 2 + 𝐶

2.
∫ √𝑥 2 − 8𝑥 + 7 𝑑𝑥 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜

1
(a) 2 (𝑥 − 4) √𝑥 2 − 8𝑥 + 7 +9𝑙𝑜𝑔|𝑥 − 4 + √𝑥 2 − 8𝑥 + 7| +C
1
(b) 2 (𝑥 + 4) √𝑥 2 − 8𝑥 + 7 +9𝑙𝑜𝑔|𝑥 + 4 + √𝑥 2 − 8𝑥 + 7| +C
1
(c) (𝑥 − 4)√𝑥 2 − 8𝑥 + 7 − 3√2𝑙𝑜𝑔|𝑥 − 4 + √𝑥 2 − 8𝑥 + 7| +C
2
1 9
(d) 2 (𝑥 − 4) √𝑥 2 − 8𝑥 + 7 − 2 𝑙𝑜𝑔|𝑥 − 4 + √𝑥 2 − 8𝑥 + 7| +C

3. 3
∫ 𝑥 2 𝑒 𝑥 𝑑𝑥 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜

1 3
a) 𝑒𝑥 + 𝐶
3
1 2
b) 𝑒𝑥 + 𝐶
3
1 3
c) 𝑒𝑥 + 𝐶
2
1 2
d) 𝑒𝑥 + 𝐶
2

4.
∫ 𝑒 𝑥 𝑠𝑒𝑐𝑥(1 + 𝑡𝑎𝑛𝑥)𝑑𝑥 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜

a) 𝑒 𝑥 𝑐𝑜𝑠𝑥 + 𝐶
b) 𝑒 𝑥 𝑠𝑒𝑐𝑥 + 𝐶
c) 𝑒 𝑥 𝑠𝑖𝑛𝑥 + 𝐶




1

, d) 𝑒 𝑥 𝑡𝑎𝑛𝑥 + 𝐶

5. 𝑥𝑑𝑥
∫ 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜
(𝑥 − 1)(𝑥 − 2)

(𝑥−1)2
a) 𝑙𝑜𝑔 | |+C
𝑥−2
(𝑥−2)2
b) 𝑙𝑜𝑔 | |+C
𝑥−1
𝑥−1 2
c) 𝑙𝑜𝑔 |(𝑥−2) | +C
d) 𝑙𝑜𝑔|(𝑥 − 1)(𝑥 − 2)| + C

6. 𝑑𝑥
∫ 𝑒𝑞𝑢𝑎𝑙𝑠
𝑥(𝑥 2 + 1)
1
a) 𝑙𝑜𝑔|𝑥| − 2 log(𝑥 2 + 1) + 𝐶
1
b) 𝑙𝑜𝑔|𝑥| + 2 log(𝑥 2 + 1) + 𝐶
1
c) −𝑙𝑜𝑔|𝑥| + 2 log(𝑥 2 + 1) + 𝐶
1
d) 𝑙𝑜𝑔|𝑥| + log(𝑥 2 + 1) + 𝐶
2

7. 𝑑𝑥
∫ 𝑒𝑞𝑢𝑎𝑙𝑠
𝑥2 + 2𝑥 + 2

a) 𝑥𝑡𝑎𝑛−1 (𝑥 + 1) + 𝐶
b) 𝑡𝑎𝑛−1 (𝑥 + 1) + 𝐶
c) (𝑥 + 1)𝑡𝑎𝑛−1 𝑥 + 𝐶
d) 𝑡𝑎𝑛−1 𝑥 + 𝐶

8. 𝑑𝑥
∫ 𝑒𝑞𝑢𝑎𝑙𝑠
√9𝑥 − 4𝑥 2
1 9𝑥−8
a) 𝑠𝑖𝑛−1 ( )+𝐶
9 8
1 −1 8𝑥−9
b) 𝑠𝑖𝑛 ( ) +𝐶
2 9
1 −1 9𝑥−8
c) 𝑠𝑖𝑛 ( )+𝐶
3 8
1 −1 9𝑥−8
d) 𝑠𝑖𝑛 ( 9 ) +𝐶
2

9. 𝑠𝑖𝑛2 𝑥 − 𝑐𝑜𝑠 2 𝑥
∫ 𝑑𝑥 𝑒𝑞𝑢𝑎𝑙𝑠
𝑠𝑖𝑛2 𝑥 𝑐𝑜𝑠 2 𝑥

a) 𝑡𝑎𝑛𝑥 + 𝑐𝑜𝑡𝑥 + 𝐶


2

, b) 𝑡𝑎𝑛𝑥 + 𝑐𝑜𝑠𝑒𝑐𝑥 + 𝐶
c) −𝑡𝑎𝑛𝑥 + 𝑐𝑜𝑡𝑥 + 𝐶
d) 𝑡𝑎𝑛𝑥 + 𝑠𝑒𝑐𝑥 + 𝐶

10. 𝑒 𝑥 (1 + 𝑥)𝑑𝑥
∫ 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜
cos2 (ex x)

a) – cot (ex x ) + C
b) tan(xex ) + C
c) tan(ex ) + C
d) cot(ex ) + C

11. 10𝑥 9 + 10𝑥 log 𝑒 10
∫ 𝑑𝑥 𝑒𝑞𝑢𝑎𝑙𝑠
𝑥10 + 10𝑥

a) 10𝑥 − 𝑥10 + 𝐶
b) 10𝑥 + 𝑥10 + 𝐶
c) (10𝑥 − 𝑥10 )−1 + 𝐶
d) log(10𝑥 + 𝑥10 ) + 𝐶

12. 𝑑𝑥
∫ 𝑠𝑖𝑛2 𝑥 𝑐𝑜𝑠2𝑥 equals

a) 𝑡𝑎𝑛𝑥 + 𝑐𝑜𝑡𝑥 + 𝐶
b) 𝑡𝑎𝑛𝑥 − 𝑐𝑜𝑡𝑥 + 𝐶
c) 𝑡𝑎𝑛𝑥𝑐𝑜𝑡𝑥 + 𝐶
d) 𝑡𝑎𝑛𝑥 − 𝑐𝑜𝑡2𝑥 + 𝐶

13. 𝑑𝑥
∫ 𝑒𝑞𝑢𝑎𝑙𝑠
𝑒𝑥 + 𝑒 −𝑥

a) 𝑡𝑎𝑛−1 (𝑒 𝑥 ) + 𝐶
b) 𝑡𝑎𝑛−1 (𝑒 −𝑥 ) + 𝐶
c) log(𝑒 𝑥 + 𝑒 −𝑥 ) + 𝐶
d) log(𝑒 𝑥 − 𝑒 −𝑥 ) + 𝐶

14. 𝑐𝑜𝑠2𝑥 𝑑𝑥
∫ 𝑑𝑥 𝑒𝑞𝑢𝑎𝑙𝑠
(𝑐𝑜𝑠𝑥 + 𝑠𝑖𝑛𝑥)2
−1
a) +𝐶
𝑠𝑖𝑛𝑥+𝑐𝑜𝑠𝑥
b) 𝑙𝑜𝑔|𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥| + 𝐶
c) 𝑙𝑜𝑔|𝑠𝑖𝑛𝑥 − 𝑐𝑜𝑠𝑥| + 𝐶



3

, 1
d) + 𝐶
(𝑠𝑖𝑛𝑥+𝑐𝑜𝑠𝑥)2


15. 𝑑 3
If 𝑑𝑥 [𝑓(𝑥)] = 4𝑥 3 − 4 𝑥 4 𝑎𝑛𝑑 𝑓(2) = 0, 𝑡ℎ𝑒𝑛

1 129
a) 𝑓(𝑥) = 𝑥 4 + 𝑥 3 − 8
3 1 129
b) 𝑓(𝑥) = 𝑥 + 𝑥 4 + 8
4 1 129
c) 𝑓(𝑥) = 𝑥 + 𝑥 3 + 8
3 1 129
d) 𝑓(𝑥) = 𝑥 + 𝑥 4 − 8
2𝑥−3
16. ∫ 𝑥 2 −3𝑥+2dx =


1
a) 𝑙𝑜𝑔|𝑥 2 − 3𝑥 + 2| + 𝑐
2
1
b) 𝑙𝑜𝑔|𝑥 2 − 3𝑥 + 2| + 𝑐
4
1
c) 8 𝑙𝑜𝑔|𝑥 2 − 3𝑥 + 2| + 𝑐
d) 𝑙𝑜𝑔|𝑥 2 − 3𝑥 + 2| + 𝑐
17. ∫ 𝑠𝑖𝑛2 x dx =
a) (1/2) { x-(sin2x)/2) + c
a) (1/3) { x-(sin2x)/2) + c
b) (-1/2) { x-(sin2x)/2) + c
c) (1/4) { x-(sin2x)/2) + c

18. ∫ 𝑥cos3(𝑥2)sin(𝑥2)𝑑𝑥 =
a) –(1/8)cos4(𝑥2) + 𝑐
b) -cos4(𝑥2) + 𝑐
c) cos4(𝑥2) + 𝑐
d) -(1/2) cos4(𝑥2) + 𝑐
19. ∫ sin(3x)cos(2x)𝑑𝑥=
a) (½)[−{cos(5x)/ 5}− cos𝑥] + 𝑐
b) [−{cos(5x)/ 5}− cos𝑥] + 𝑐
c) cos(5x)/ 5}− cos𝑥] + 𝑐
d) [ {cos(5x)/ 5}− cos𝑥] + 𝑐

20. ∫ 2𝑥 dx = f(x) + c , then f(x) =
a) 2𝑥
b) 2𝑥 𝑙𝑛2
c) 2𝑥 /𝑙𝑛2
d) 2𝑥+1 /(x+1)

4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller bansal25srishti. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $7.99. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

84146 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$7.99
  • (0)
  Add to cart